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Preface

On behalf of the International Program Committee and the Local Organizing

Committee we welcome all participants to the 8th Liquid Matter Conference.

The conference is organized jointly by the Liquids Section of the Condensed

Matter Division of the European Physical Society, the Universität Wien, and the

Technische Universität Wien. Previous conferences were held in Lyon (1990),

Firenze (1993), Norwich (1996), Granada (1999), Konstanz (2002), Utrecht

(2005), and Lund (2008). The aim of the conference is to bring together sci-

entists working on the liquid state of matter and on closely related topics. Ever

since the first conference of this series, the spectrum of scientific topics ad-

dressed in these conferences has substantially changed. Concepts and methods

originally developed for simple and complex fluids have been systematically

extended to investigate and understand properties of more complex systems,

including nowadays soft matter and biophysical systems. The scientific con-

tributions submitted to this conference demonstrate that the meeting covers a

wide spectrum of scientific topics, including the physics, chemistry, biology,

and chemical engineering of liquid matter as well as several areas of applied

research. We hope that this conference will contribute to intensify these inter-

disciplinary collaborations.

At this meeting the Liquid Matter Prize of the European Physical Society will be

awarded for the third time. The recipient of this prize, awarded for ”outstanding

contributions to the science of liquid matter”, is Professor David Chandler of the

University of California at Berkeley (USA). Further, we are pleased to host the

second edition of the EPJE – Pierre Gilles De Gennes Lecture Prize; the recip-

ient of this prize is Professor Michael E. Cates of the University of Edinburgh

(UK) in recognition of his ”outstanding and deeply influential contribution in

soft matter science”.

Overall, the conference features 2 prize lectures, 9 further plenary talks, 26 in-

vited keynote and 96 contributed oral presentations, which have been selected

by the International Program Committee. As of July 18, 2011, 787 poster con-

tributions have been submitted.

The organizers gratefully acknowledge support from various organizations. In

particular, we would like to thank the Universität Wien who offered us to stage

the scientific program of this conference in one of the most attractive venues of

Wien. We gratefully acknowledge the invitation of the Mayor of Wien to the

Rathaus, where the Conference Dinner will take place. Finally, we thank all

sponsors for generous financial support.

Christoph Dellago

Universität Wien

International Program Committee

Gerhard Kahl

Technische Universität Wien

Local Organizing Committee
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Social Program

Welcome Reception

The Welcome Reception, co-sponsored by Soft Matter, will take place on Mon-

day, September 5, 2011, from 18:00-21:00 in the Arcades (Arkadenhof) of the

Universität Wien, located close to the registration area. Snacks and drinks will

be served.

Conference Dinner

The Conference Dinner will be held on September 7, 2011, at 19:00 in the

Festsaal of the City Hall, which is located within five minutes walking distance

from the conference site (see map below). The address of the Vienna City Hall

is: Lichtenfelsgasse 2, A-1010 Wien.

!∀#∃%&%#∋%((

)∗##%&(
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Practical Informations

Venue

The conference will take place in the main building of the Universität Wien,

Dr.-Karl-Lueger-Ring 1, A-1010 Wien, Austria.
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All plenary lectures will be held in the Auditorium Maximum. The parallel

sessions will take place in the Auditorium Maximum, the Small Ceremonial

Hall (Kleiner Festsaal) and the Lecture Hall 28 (Hörsaal 28).

The poster sessions and the accompanying coffee breaks will take place in the

Arcades. In this area also lunch will be served.

Floor plans of the conference site are included on pages 13-15 of this booklet.

Registration

The registration desk and the conference office are located in the Aula of the

main-building of the Universität Wien (see floor plan on page 14). Registration

starts on Monday, September 5, 2011; on this day, the conference office is open

from 15:00-20:00.

If you have not paid your conference fee yet, you will have the possibility to

do so at the conference office. Furthermore, you can purchase tickets for the

conference dinner if places are still available (for technical reasons, the number

of participants is limited to 800).

On Tuesday, September 6, 2011, the conference office opens at 8:00. From

Wednesday, September 7, to Saturday, September 10, 2011, our staff is available

from 8:30 onwards at the conference office . The office closes 15 minutes after

the last lecture.

As you register you will receive the following documents:

• the conference booklet;

• a CD containing all the abstracts of the poster contributions as a pdf-file;

• a name badge; all participants are kindly requested to wear this name

badge when attending the meeting; only participants who are wearing

their name badges will be admitted to the lecture halls, coffee breaks,

and lunches;

• a letter certifying your attendance.
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Oral and poster presentations

Oral presentations

Oral presentations will be given in the Auditorium Maximum, the Smalll Cere-

monial Hall (Kleiner Festsaal) and Lecture Hall 28 (Hörsaal 28) as indicated in

the floor plans on pages 13-15.

Contributors are kindly requested to upload their contributions at the Editor’s

Desk (which is part of the conference office) half a day before the respective

session. In case your contribution is scheduled for Tuesday morning (September

6, 2011), you are kindly asked to upload your contribution already on Monday

evening at the registration. When transferring your files to the editor’s computer,

please check your contribution for a proper presentation; this holds in particular,

if you plan to show videos.

No overhead projectors are available.

For technical reasons only ppt(x) and pdf files are accepted.

Use of personal laptops for presentations is not possible.

Prize winner and plenary lectures are scheduled for 45 (= 35 + 10) minutes,

keynote contributions are scheduled for 30 (= 23+7) minutes, and contributed

presentations are scheduled for 20 (=16+4) minutes, including discussion as

indicated in brackets. Chair persons are instructed to follow the time schedule

rigorously.

Poster presentations

The poster sessions will take place in the Arcades of the main-building of the

Universität Wien. We kindly ask the presenters to stay close to their respective

posters during the poster sessions.

Posters will be on display according to the following time schedule:

Tuesday, September 6

◦ Session 2: Water, solutions and reaction dynamics

◦ Session 9: Non-equilibrium systems, rheology, nanofluidics

◦ Session 10: Biofluids, active matter

Wednesday, September 7

◦ Session 5: Colloids

Thursday, September 8
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◦ Session 7: Confined fluids, interfacial phenomena

◦ Session 8: Supercooled liquids, glasses, gels

Friday, September 9

◦ Session 1: Ionic and quantum liquids, liquid metals

◦ Session 3: Liquid crystals

◦ Session 4: Polymers, polyelectrolytes, biopolymers

◦ Session 6: Films, foams, surfactants, emulsions, aerosols

The list of all posters (titles and authors) is reproduced in this conference book-

let. Please be sure that you display your poster at the poster wall assigned to

your contribution (i.e., according to the assigned code).

The abstracts of the poster contributions are available on the CD distributed with

the conference material and on the conference webpage.

The poster boards are 200 cm high and 100 cm wide. Adhesive tapes will be

provided to fix the posters.

Posters should be mounted in the morning and dismounted in the evening of the

respective day. Posters that have not been dismounted in time will be removed

by the organizers.

Poster prizes

The three best posters presented by young researchers at the Liquid Matter Con-

ference will be awarded with poster prizes sponsored by Soft Matter. Prize

winners, selected by the International Program Committee, will receive a cer-

tificate, an online subscription to Soft Matter, and will be featured on the Soft

Matter webpage. The poster prizes will be awarded on Saturday, September 10,

at 10:30 preceding the first plenary lecture.
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Other useful information

Internet

WLAN will be available for all participants during the conference.

To access WLAN, start a browser and use the following access codes:

• user-name: lmc8

• password: v1enna

Personal Computers with internet access are available in Lecture Hall 27 during

lunch breaks (for the exact times of the lunch breaks see program).

Coffee break and lunch

Coffee breaks will take place in the Arcades according to the time schedule at

the back of the booklet.

Lunch will be served in the Arcades. Lunch is free of charge for conference

participants (please wear your name badge) and will be available from 12:15 to

13:45.

Additional informations

Conference staff will be happy to assist participants during the whole confer-

ence. Conference staff responsible for technical issues in the lecture halls will

wear T-shirts with the conference logo.

Tables and chairs in the Large Ceremonial Hall (Grosser Festsaal) will offer you

the possibility to meet with your colleagues.

Possible changes in the program will be announced on a message board close to

the conference office.

An additional message board will be available close to the registration

desk/conference office, displaying messages to participants. You may also leave

messages for your colleagues at this board.

A cloakroom (close to the Auditorium Maximum) will be available on Saturday,

September 10, from 8:30 until 12:30.
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Proceedings

Following a longstanding tradition, we kindly invite contributors of oral con-

tributions to publish their results in a special issue of Journal of Physics: Con-

densed Matter.

As you submit your contribution via the journal website at

http://iopscience.iop.org/0953-8984 please use the following

specifications:

• Article type = special issue article

• Special issue = Liquid matter

At this website also general submission rules of the journal are summarized.

The length of your article should lie between a minimum of five and a maximum

of ten journal pages. Your article will be refereed by one or more external ref-

erees. The special issue should become a standard reference for recent progress

in liquid matter science. Thus only articles containing original, yet unpublished

material will be accepted.

In an effort to guarantee a timely production of this special issue, the deadline

for the manuscript submission is October 15, 2011.

Every conference participant will receive a copy of the issue.
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Prize

Pathways to forming glass: hierarchies, bubbles
and order-disorder in space-time
EPS Liquid Matter Prize 2011 Lecture

David Chandler

University of California, Berkeley, Department of Chemistry, 94720,
Berkeley, CA, USA

The onset to vitrification is characterized by heterogeneous dynamics, which re-
sults in singular time-correlations, super-Arrhenius temperature variation, and
transport decoupling. The phenomena possess significant degrees of universal-
ity, and when viewed in terms of the statistical mechanics of trajectory space,
they appear as forms of pre-wetting (in space-time) and precursors to a non-
equilibrium phase transition. Numerical simulation and analytical treatment
elucidate the nature of heterogeneous dynamics, its associated non-equilibrium
transition and its relationship to making glass.

Plenary
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How different are polymeric glasses from glassy
simple liquids?
EPJE - Pierre Gilles De Gennes Lecture Prize

Michael Cates,1 Suzanne Fielding,2 and R. G. Larson3

1University of Edinburgh, Mayfield Road, EH9 3JZ, Edinburgh,
United Kingdom
2Durham University, Durham, United Kingdom
3University of Michigan, Michigan, USA

Polymer glasses show emergent features that do not arise either for molten poly-
mers or for simple glassy fluids. Recent years have seen remarkable progress
in establishing theories for the deformation response of each of those classes
of materials separately; but so far there has been limited success in unifying
such approaches. Here we show that one striking emergent property of poly-
mer glasses – the time evolution of their segmental mobility under elongational
flow – can be explained by compling one of the simplest models of polymer
dynamics to a minimal model of an aging glass. This suggests that at least some
features of polymeric glasses, though initially mysterious, may have simple ex-
planations.

Plenary
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Self assembly and the role of shape in hard
particle fluids and crystals

Sharon Glotzer

University of Michigan, 2300 Hayward St, 48109-2136, Ann Arbor,
USA

While the structural diversity of colloidal fluids and crystals has grown sub-
stantially in recent years, it still aspires to that of atomic and molecular systems.
Ionic colloidal crystals and binary nanoparticle superlattices, by exploiting elec-
trostatic interactions in mixtures of particles of opposite charge, have substan-
tially broadened the diversityof structures beyond those obtainable in traditional
hard sphere systems, but rely on energetic interactions as well as entropy for
their stability. Here we explore the role of shape and entropy in phase transi-
tions of hard particle fluids and their crystals. Using computer simulations, we
show that particle shape alone can suffice to produce a rich diversity of colloidal
crystal structures whose complexity rivals that of atomic analogues.
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Synchronization of eukaryotic flagella

Raymond Goldstein

University of Cambridge, DAMTP/Centre for Mathematical Sciences,
CB3 0WA, Cambridge, United Kingdom

One of the most fundamental issues in biology is the nature of evolutionary tran-
sitions from single cell organisms to multicellular ones. Not surprisingly for mi-
croscopic life in a fluid environment, many of the processes involved are related
to transport and locomotion, for efficient exchange of chemical species with the
environment is one of the most basic features of life. This is particularly so in
the case of flagellated eukaryotes such as green algae, whose members serve as
model organisms for the study of transitions to multicellularity. In this talk I
will focus on recent experimental and theoretical studies of the stochastic non-
linear dynamics of these flagella, whose coordinated beating leads to graceful
locomotion but also to fluid flows that can out-compete diffusion. A synthesis
of high-speed imaging, micromanipulation, and three-dimensional tracking has
quantified the underlying stochastic dynamics of flagellar beating, allowed for
tests of the hydrodynamic origins of flagellar synchronization, and revealed a
eukaryotic equivalent of the run-and-tumble locomotion of peritrichously flag-
ellated bacteria. Challenging problems in applied mathematics, fluid dynamics,
and biological physics that arise from these findings will be highlighted.

Plenary
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Topological constraints matter: collapsed polymer
globules, chromosome territories, nano
composites

Kurt Kremer

MPI for Polymer Research, Ackermannweg 10, 55128, Mainz,
Germany

The role of topological constraints on conformational as well as relaxational
and dynamical properties of open linear and closed ring polymers as well as
mixtures thereof is discussed. In the case of polymer melts the conformational
statistics can be used to directly determine the entanglement molecular weight
in excellent agreement to experiment. By manipulating the entanglements in
long chain melts materials with new rheological properties can be achieved. For
ring polymers the situation is completely different. While linked rings act like
DeGennes’ Olympic gels, we find by massive computer simulations employing
a specially adapted algorithm that non concatenated polymer rings segregate and
form individual collapsed objects. We discuss the details of their conformations,
which not only is related to one of the very basic problems in polymer science
but also has far reaching consequences from the collapse of gels to chromosome
territories.

Plenary
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Liquid crystal colloids

Igor Musevic

J. Stefan Institute, Jamova 39, SI 1000, Ljubljana, Slovenia

Dispersions of solid or liquid particles in liquid crystals show several novel
classes of anisotropic forces between inclusions, which do not exist in isotropic
solvents [1]. Of particular interest are nematic colloids, where the orientation-
ally ordered nematic liquid crystal provides extremely strong, anisotropic and
long-range particle pair interaction [2]. These forces are the consequence of
elastic distortion of a liquid crystal around the inclusions. They are responsible
for a fascinating variety of colloidal assemblies in nematic liquid crystals,
such as 2D [3] and 3D nematic colloidal crystals, colloidal superstructures
in the mixtures of large and small colloidal particles [4], and colloidal wires,
entangled topological defects [5]. In chiral nematic colloids, entanglement of
topological defects loops results in the formation of knots and links. In all
cases, the colloidal binding energy is several orders of magnitude stronger
compared to water based colloids. The mechanisms of nematic colloidal
self-assembly are discussed, as well as the role of topology and geometry of
defects in the nematic liquid crystal. It will be shown that nematic dispersions
provide a unique platform for soft matter photonics, where liquid tunable
optical microresonators [6] and microlasers [7] can be self-assembled in a
fraction of a second.

[1] P. Poulin, H. Stark, T. C. Lubensky, D. A. Weitz, Science 275, 1770(1997).
[2] M. Yada, J. Yamamoto, H. Yokoyama, Phys. Rev. Lett. 92, 185501 (2004).
[3] I. Musevic, M. Skarabot, U. Tkalec, M. Ravnik, S. Zumer, Science 313,
954(2006).
[4] M. Skarabot et. al. Phys. Rev. E, 77, 061706(2008).
[5] M. Ravnik et al., Phys. Rev. Lett. 99, 247801(2007).
[6] M. Humar, M. Ravnik, S. Pajk, I. Musevic, Nat. Photonics 3, 595(2009).
[7] M. Humar, I. Musevic, Opt. Express, 18, 26995(2010).
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Jamming and the emergence of rigidity

Sidney Nagel

University of Chicago, 929 E. 57th St., 60637, Chicago, USA

When a system jams it undergoes a transition from a flowing to a rigid state. De-
spite this important change in the dynamics, the internal structure of the system
remains disordered in the solid as well as the fluid phase. In this way jamming
is very different from crystallization, the other common way in which a fluid so-
lidifies. Jamming is a paradigm for thinking about how many different types of
fluids - from molecular liquids to macroscopic granular matter - develop rigidity.
As the geometrical constraints between constituent particles become important,
it is less easy for a fluid to flow. At zero temperature, the jamming transition
is unusual - with aspects of both continuous and discontinuous behavior. By
studying the normal modes of vibration, we have found that the properties of
the marginally-jammed solid are also highly unusual and provide a new way of
thinking about disordered systems generally.
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Exploring and exploiting photoacids to reveal
ultrafast hydrogen bond and proton transfer
dynamics in solution

Erik T. J. Nibbering

Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie,
Max Born Strasse 2A, D-10623, Berlin, Germany

Modern discussions of solution phase acid-base reactions have evolved from
the seminal studies of Eigen and Weller in the 60s [1]. It was already then
realised that the elementary steps of proton transfer between acids and bases
occur on ultrafast time scales. Ongoing technological advances in time-resolved
spectroscopy in the 80s, 90s and 00s have led to breakthroughs in understanding
proton transfer dynamics. In these time-resolved studies a class of organic
molecules called photoacids have been used as a means to trigger proton
transfer on ultrafast time scales. Photoacids are organic molecules that show a
large increase in acidity upon electronic excitation. Recent advances in ultrafast
infrared spectroscopy have led to a microscopic insight of aqueous acid-base
neutralization reactions. I will present an example of photo-induced aqueous
proton transfer generating the world’s most abundant acid [2], i.e. carbonic
acid, and will indicate the role it plays in the aqueous chemistry of carbon
dioxide [3]. Whereas profound insight in aqueous proton transfer pathways
in acid-base neutralization have been achieved in recent years, the underlying
reasons for photoacidity is still an active research topic. Recent approaches
how to tackle this issue by experiment will be discussed.

[1] A. Weller, Progr. React. Kin. 1, 187 (1961); M. Eigen, Angew.
Chem. Intl. Ed. Engl. 3, 1 (1964).
[2] K. Adamczyk et al., Science 326, 1690 (2009).
[3] T. Loerting et al., Angew. Chem. Int. Ed. 39, 892 (2000).
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Leidenfrost state

David Quere,1 Mathieu Bancelin,1 James Bird,1 Christophe

Clanet,1 Guillaume Dupeux,1 Guillaume Lagubeau,1 Marie Le
Merrer,1 and Keyvan Piroird1

1ESPCI, France

As pointed out by Johann Leidenfrost in 1756, a liquid on a very hot solid
levitates on a cushion of its own vapour. As a consequence, these drops are ultra-
mobile, compared to the ones we can see on window panes or on windshields.
We discuss in our talk a few consequences of this mobility: 1) how drops can be
put in motion using the tiny forces generated by asymmetric substrates; 2) how
they can be manipulated using adapted fields; 3) how they can be stopped and
trapped using textures. We conclude by describing ways to generate dynamic
Leidenfrost situations, which take advantage of air motion to induce levitation,
instead of heat.

Plenary
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The unbearable heaviness of colloids

Roberto Piazza

Politecnico di Milano, Department of Chemistry (CMIC), 20133, Milano,
Italy

Colloids are unavoidably prone to settling. Often an experimental annoyance,
sedimentation can nonetheless provide a rewarding opportunity to obtain crucial
information on the structural and dynamical properties of both equilibrium and
metastable structures, which can hardly be probed in homogenous conditions.In
particular, I shall show that:

• Measurements of equilibrium sedimentation profiles allow reconstruct-
ing the phase diagram and the full equation of state of systems of particles
interacting via complex potentials. Even for colloids getting stuck into
a gel structure, the steady-state profile provides valuable information on
the elastic properties of the an arrested phase, yielding the concentration
dependence of the compression modulus [1].

• The investigation of the kinetic settling profile of a settling suspension
provides direct information on hydrodynamic interactions over a wide
concentration range [2].

• Using as a “flag” the settling enhancement associated to the spinodal de-
composition processes taking place within a liquid-liquid demixing gap
allows investigating complex depletion phenomena and relate them to the
critical Casimir effect [3].

• More generally, a general survey of the birth, collapse and restructuring
of depletion gels yields a rich panorama of complex and often unexpected
effects [4].

All the former investigations, and in particular the last mentioned, greatly
profited from the application of novel optical methods, which I shall comment
on, relying on tuning the spatial coherence of the illumination on the image
plane.

[1] S. Buzzaccaro, R. Rusconi, and R. Piazza, Phys. Rev. Lett. 99,
098301 (2007)
[2] S. Buzzaccaro, A.Tripodi, R. Rusconi, D, Vigolo, and R.Piazza, J. Phys.:
Cond. Matt. 20, 494219 (2008)
[3] S. Buzzaccaro, J. Colombo, A. Parola, and R. Piazza, Phys. Rev. Lett. 105,
198301 (2010)
[4] G. Brambilla, S. Buzzaccaro, R. Piazza, L. Berthier, and L.Cipelletti, Phys.
Rev. Lett. 106, 118302 (2011)
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Intrinsic structure and capillary waves spectrum at
liquid surfaces

Pedro Tarazona

Universidad Autonoma de Madrid, Depto. Fisica Teorica de la Materia
Condensada, 28049, Madrid, Spain

The usual representation of liquid surfaces through smooth density profiles
hides most of the details in the molecular structure of these interfaces. The
concept of a sharper ”intrinsic structure”, that becomes blurred by the capillary
wave fluctuations of the liquid surface, was postulated long time ago [1], but
only over the last few years we have got efficient methods to separate the
intrinsic structure and the spectrum of capillary waves fluctuations from the
molecular configurations sampled in computer simulations of liquid surfaces
[2]. These recent advances in an old standing problem are opening a new
perspective for the molecular arrangements in fluid surfaces. E.g. we may get
a surface compactness index [3], relating the two-dimensional density of the
first liquid layer with the bulk density, to characterize the surface structure
of different liquids in terms similar to those used for crystal phases. Our
description of complex fluid interfaces may also gain from the analysis of their
intrinsic structure, e.g. to characterize the hydrophobic gap in water-oil systems
[3], or to decompose the fluctuation spectrum in lipid bilayers membranes.
The accurate characterization of the undulating (capillary wave) mode may be
achieved through the cross-correlation between the nominal intrinsic surfaces,
pinned to the molecular positions of two different molecular layers. The
full characterization of the capillary waves spectrum may be done in terms
of three physical parameters: the low-q limit of the (macroscopic) surface
tension, a bending modulus and a soft cut-off that sets the molecular limit for
the undulations of the surface as a whole. The talk will also comment on the
new experimental and theoretical challenges [5], to measure and predict the
features observed through the intrinsic analysis of liquid surfaces in computer
simulations.

[1] FP Buff, RA Lovett and FH Stillinger (1965), PRL 15, 621; FH Still-
inger (1982), J. Chem Phys 76, 1087.
[2] E Chacon and P Tarazona (2003), PRL 91, 166103; P Tarazona and E
Chacon (2004), PRB 70, 235407; J. Chowdhary and BM Ladanyi, (2006) J.
Phys, Chem. B 110, 15442; M Jorge and NNDS Cordeiro (2007) J. Phys.
Chem. C 111, 17612; LB Partay et al. (2008) J. Comp. Chem. 29, 945.
[3] E Chacon et al. (2009), PRB 80, 195403.
[4] F. Bresme et al. (2008), PRL 101, 056102
[5] P Tarazona, R Checa and E Chacon (2007), PRL 99, 196101.
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K1.1

Diffusion of mass in liquid alloys

Andreas Meyer

German Aerospace Center, Institute of Materials Physics in Space,
51170, Cologne, Germany

Atomic diffusion is a fundamental property for an understanding of liquid dy-
namics, nucleation, vitrification, and crystal growth. Diffusion data serve as a
vital input to the modeling of microstructure evolution and are an essential con-
trol to molecular dynamics simulation results. A common method to measure
diffusion coefficients in liquid alloys is the long capillary (LC) technique and
its variations. There, a diffusion couple of different composition, in the case of
interdiffusion, or containing a different amount of isotopes, in the case of self
diffusion, is annealed in the liquid state and subsequently quenched to ambient
temperature. The diffusion profiles are analyzed post mortem. This technique
exhibits several drawbacks, that in most cases prevent an accurate measurement
of diffusion coefficients - convectice contributions during diffusion anealing are
the most prominent ones. Recently, the field of liquid diffusion experiments
advanced through the use of quasielastic neutron scattering (QNS) on levitated
metallic droplets for accurate measurements of self diffusion coefficients in high
temperature metallic liquids. For the accurate measurement of interdiffusion we
combine LC experiments with an in situ monitoring of the entire interdiffusion
process by the use of X-ray and neutron radiography. These experiments are
accomponied by diffusion experiments in space in order to benefit from the
purely diffusive transport under microgravity conditions for a large variety of
alloy systems. In this presentation recent experimental results are discussed in
the context of the relation of self- and interdiffusion, the relation of self diffu-
sion and viscosity, as well as the relation of properties of mass transport and the
atomic melt structure.

1. Ionic and quantum liquids, liquid metals
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Structure and dynamics of network-forming
liquids

Mark Wilson

University of Oxford, Physical and Theoretical Chemistry Laboratory,
Oxford, United Kingdom

Intermediate-range order (IRO), in which systems exhibit structural ordering on
length-scales beyond the nearest-neighbour (short-range), has been identified in
a wide range of materials and is characterised by the appearance of the so-called
first sharp diffraction peak (FSDP) at low scattering angles. The precise struc-
tural origin of such ordering remains contentious and a full understanding of
the factors underlying this order is vital if such materials (many of which are
technologically significant) are to be produced in a controlled manner. Simula-
tion models, in which the ion-ion interactions are represented by relatively sim-
ple potential functions which incorporate (many-body) polarisation and which
are parameterised by reference to well-directed electronic structure calculations,
have been shown to reproduce such IRO and allow the precise structural origin
of the IRO to be identified. Furthermore, the use of relatively simple (and hence
computationally tractable) models allows for the study of the relatively long
length- and time-scales required. Two typical systems, zinc chloride (which is
usually considered as ‘ionic’) and germanium selenide (considered as having
‘covalent’ character) have been recently modelled as key target systems deliber-
ately chosen so as to potentially represent two different bonding ‘types’ whilst

both displaying FSDPs at ∼1Å
−1

. Both have received recent significant ex-
perimental and computational (electronic structure) attention. The underlying
structures are analysed with reference to both recent (neutron scattering) exper-
imental results and high level electronic structure calculations and the origin of
the FSDP in the Bhatia-Thornton SCC(k) function discussed. The role of key
structural units (corner and edge sharing polyhedra) in determining the network
topology is investigated in terms of the underlying dynamics and the relation-
ship to the glass transition considered.

1. Ionic and quantum liquids, liquid metals
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Exploring water at negative pressure

Frédéric Caupin,1 Arnaud Arvengas,2 Kristina Davitt,2 Mouna El

Mekki,1 Claire Ramboz,3 David A. Sessoms,4 and Abraham D.
Stroock4

1Université Claude Bernard Lyon 1, LPMCN - Bâtiment Brillouin,
69622, Villeurbanne Cedex, France
2Laboratoire de Physique Statistique ENS-UPMC-Paris Diderot-CNRS,
Paris, France
3Institut des Sciences de la Terre d’Orléans, Orléans Cedex 2,
France
4Cornell University, Ithaca, USA

Water is famous for its anomalies, most of which become dramatic in the
supercooled region, where the liquid is metastable with respect to the solid.
Another metastable region has been hitherto less studied: the region where the
pressure is negative. We will review the work on the liquid in the stretched state.
Most of the research has been focused on determining the limit of rupture of
the liquid by the nucleation of bubbles. Our groups have recently investigated
this cavitation limit by three techniques: focused ultrasound, artificial trees,
and liquid inclusions in quartz. A puzzling discrepancy between experiments
and theory remains unexplained. Analysis of the cavitation probability with the
nucleation theorem [1] provides the size of the critical bubble and may help us
to understand the nucleation mechanism. Characterization of the properties of
the metastable liquid before it breaks is a challenging task that has been less
tackled. The recent measurement of the equation of state of the liquid at room
temperature down to -26 MPa [2] opens the way to more detailed information
on the liquid at low density. We will conclude with a discussion of our current
efforts to complete a map of the thermodynamic, dynamic, and structural
properties of this liquid water at negative pressure.

[1] K. Davitt et al., EPL 90, 16002 (2010).
[2] K. Davitt et al., J. Chem. Phys. 133, 174507 (2010).
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Competing quantum effects in liquid water

David Manolopoulos

Oxford University, PTCL, OX1 3QZ, Oxford, United Kingdom

I will begin with an overview of the ring polymer molecular dynamics (RPMD)
method for including quantum mechanical (zero point energy and tunneling)
effects in molecular dynamics simulations. I will then use this method to
investigate the role of quantum effects in the dynamics of room temperature
liquid water, using a flexible water model that has been parameterized to agree
with a wide variety of experimental measurements in quantum mechanical
(path integral-based) simulations [1]. If time allows, I will also mention some
more recent work from the group of Angelos Michaelides [2]. This work
confirms what we have found for liquid water and generalizes our main result
(the existence of a competition between intra- and intermolecular quantum
effects) to a wide variety of other hydrogen-bonded systems.

[1] S. Habershon, T. E. Markland and D. E. Manolopoulos, J. Chem.
Phys. 131, 024501 (2009).
[2] X-Z. Li, B. Walker and A. Michaelides, Proc. Natl. Acad. Sci. 108, 6369
(2011).
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Amorphous networks and rheological response of
blue phases in chiral nematic liquid crystals

Oliver Henrich,1 Kevin Stratford,2 Davide Marenduzzo,3 and

Michael E. Cates3

1University College London, Centre for Computational Science,
WC1H 0AJ, London, United Kingdom
2Edinburgh Parallel Computing Centre, Edinburgh, United Kingdom
3University of Edinburgh, Edinburgh, United Kingdom

Blue Phases (BPs) are equilibrium phases in thermotropic cholesteric close
to the cholesteric-isotropic transition. They consist of a lattice of disclination
lines with typical length scales around the wavelength of visible light. While
older experiments typically observed BPs only in a very narrow temperature
range of about 1 K, more recent ones have created BPs over a strikingly wide
temperature window of 50 K. However, for this potential for future applications
to be fully realized we need our understanding of BPs to advance at the same
pace. In this work we show that large scale simulations can help settle important
physical question.
The structure of BPIII has been the subject of a long debate in liquid crystal
research. Our findings provide strong evidence that BPIII is an amorphous
disclination network [1,2] and appear to rule out competing explanations
invoking a quasi-crystal icosahedral symmetry. Remarkably, we find that
within a certain window of chirality and with a standard choice of free energy
functional, individual aperiodic structures exist that are more stable than any
other ordered BP. Depending on the sign of the dielectric anisotropy we also
observed transitions of the network to new, field-induced BPs as in experiments.
More recently we were able to gain first insights into the rheological response of
cubic BPI and BPII. In simple shear flow both phases exhibit a pronounced per-
meative motion of the disclination network in the direction of vorticity, whereas
the sense of motion depends on the helicity of the underlying cholesteric. While
BPII remains closer to its affinely transformed equilibrium configuration, BPI
shows intriguing flow induced structures, which are possibly indicate the onset
of rheochaos.

[1] O. Henrich, K. Stratford, D. Marenduzzo, M.E. Cates, Phys. Rev.
Lett. 106, 107801 (2011).
[2] O. Henrich, K. Stratford, D. Marenduzzo, M.E. Cates, Proc. Nat. Acad.
Sci. USA 107, 13212-13215 (2010).
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Smectics!

Randall Kamien

University of Pennsylvania, 209 S. 33rd Street, 19104-6396,
Philadelphia, PA, USA

The homotopy theory of topological defects in ordered media fails to completely
characterize systems with broken translational symmetry. We argue that the
problem can be understood in terms of the lack of rotational Goldstone modes in
such systems and provide an alternate approach that correctly accounts for the
interaction between translations and rotations. Dislocations are associated, as
usual, with branch points in a phase field, whereas disclinations arise as critical
points and singularities in the phase field. We introduce a three-dimensional
model for two-dimensional smectics that clarifies the topology of disclinations
and geometrically captures known results without the need to add compatibility
conditions. We use this to uncover a formerly unknown structure in focal conic
domains.

3. Liquid crystals
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Design of Complex Liquid Crystals with Polyphilic
Molecules

Carsten Tschierske,1 M. Prehm,1 B. Glettner,1 C. Nürnberger,1

H. Ebert,1 G. Ungar,2 F. Liu,2 and X.-B. Zeng2

1Martin-Luther University Halle, Org. Chem., Kurt-Mothes Str. 2,
06120, Halle/Saale, Germany
2University Sheffield, Sheffield, United Kingdom

Recent progress in the design of complex liquid crystalline phases based on
self assembly of polyphilic molecules will be reviewed. First, the concept of
T-shaped polyphiles is shortly introduced which form series of fluid honeycomb
phases based on polygons with cross sectional shapes ranging from triangles
via squares and pentagons to hexagons and beyond [1]. Main focus will be on
X-shaped polyphiles composed of four different and incompatible units which
produce honeycomb cells with distinct composition (multicolour tilings), lead-
ing to a wide range of complex nano-scale morphologies with new superlattices
and increased periodicities [2]. In all these ordered liquids space is divided into
a number of distinct nanometer sized compartments separated by walls formed
by p-conjugated aromatics. The number of distinct compartments can be further
increased by local mixing of incompatible units in distinct fixed ratios, in this
way creating new ”colors”. Thus, fine-tuning of geometric frustration and
miscibility frustration allows formation of structures with a number of distinct
compartments exceeding the number of incompatible units actually combined
in the molecular tectons; in this way up to seven distinct compartments have
been created using polyphiles incorporating only four distinct units. Besides
the honeycomb structures also other modes of self assembly, like bicontinuous
networks, crossed columns and different combinations of layers and columns
can be achieved. This illustrates the enormous potential of the concept of
polyphilic liquid crystal engineering for creating new highly complex and also
regular soft self-assembled nano-scale structures.

[1] C. Tschierske, Chem. Soc. Rev. 36, 1930 (2007).
[2] X. Zeng, R. Kieffer, B. Glettner, C. Nürnberger, F. Liu, K. Pelz, M. Prehm,
U. Baumeister, H. Hahn, H. Lang, G. A. Geringer, C. H. M. Weber, J. K.
Hobbs, C. Tschierske, G. Ungar, Science 311, 1302 (2011).
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Crumpled globule, melt of rings, and genome
folding

Alexander Grosberg

New York University, 4 Washington Place, 10003, New York, NY,
USA

Crumpled globule, initially hypothesized as a long lived intermediate state on
the path of a long polymer chain collapse transition, is now considered a likely
candidate model for large scale organization of DNA in an interphase nucleus
of an eukaryote cell. It is also supposed to be the equilibrium state of a ring
squeezed between other unconcatenated rings in the melt of rings. Crumpled
state has peculiar and as yet incompletely understood fractal properties. In this
talk, the current understanding of crumpled globule will be reviewed from both
the point of view of its applications and its fundamental understanding.

4. Polymers, polyelectrolytes, biopolymers
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Coarse-graining strategy for polymers in solution

Carlo Pierleoni

INFN, Italy

I review the basis of the coarse-graining strategy for polymers in solution which
maps groups of monomers into effective monomers with monomer-averaged
effective interactions [1]. The level of coarse-graining, that is the number of
effective monomer per chain, defines the length scale below which structural
details are lost. At the highest level of coarse-graining, chains are mapped onto
soft particles interacting by density dependent pair potentials. Although it is
essential to reproduce the thermodynamic behavior expected by scaling laws,
the dependence of the effective potential from the density makes the extension
of this model to more complex situations impractical. For solutions of diblock-
copolymer, the minimal coarse-grained model maps a single copolymer onto
a dumbbell of soft effective monomers [2]. In this simple model the effective
interactions can be obtained with the RISM theory at zero density only, and an
extension at finite density can only be obtained by iterative numerical inversion
of the full-monomer generated structure, limiting very much its applicability.
Nonetheless, this simple model exhibits a reach phenomenology when studied
at finite density, presenting a CMC for the formation of spherical micelles
and a crystalline phase of micelles at even higher density, a phenomenology
which is also found in experiments on diblock copolymer solutions [3,4,5].
A less-grained model can in principle be adopted to extend the use of density
independent potential to finite density. I will present several attempts in this
direction [6,7,8] and discuss future directions of research.

[1] P. G. Bolhuis, A. A. Louis, J. P. Hansen, and E. J. Meijer, J. Chem.
Phys., 114, 4296 (2001).
[2] C. I. Addison, J. P. Hansen, V. Krakoviack, A. A. Louis, Mol. Phys., 103,
3045 (2005).
[3] C. Pierleoni, C. Addison, J.-P. Hansen, and V. Krakoviack, Phys. Rev. Lett.,
96, 128302 (2006).
[4] B. Capone, C. Pierleoni, J.-P. Hansen, and V. Krakoviack, J. Phys. Chem.
B, 113, 3629 (2009).
[5] G. D’Adamo and C. Pierleoni, J. Chem. Phys., 133, 204902 (2010).
[6] C. Pierleoni, B. Capone, and J. P. Hansen, J. Chem. Phys., 127, 171102
(2007).
[7] A. Pelissetto, J. Phys.: Condens. Matter, 21, 115108 (2009).
[8] B. Capone, J.-P. Hansen and I. Coluzza, Soft Matter, 6, 6075 (2010).
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On the dynamics of macromolecules: from
synthetic polymers to proteins

Dieter Richter

Jülich Center for Neutron Science; Forschungszentrum Jülich,
Leo Brandt Strasse, 52428, Jülich, Germany

Neutron Spin-Echo-Spectroscopy accesses the dynamics of macromolecules in
space and time on the level of the chains. In the past most of the efforts were
focussed on the dynamics of synthetic polymers that to a large extend the deter-
mine their rheological and mechanical properties. Recently such studies were
extended towards the domain dynamics of proteins that are detrimental for their
function. My lecture addresses some key challenges in the field. First on
the example of polymer nanocomposites I’ll discuss the dynamics of synthetic
polymers in a complex environment. I will display neutron scattering data ad-
dressing length and time scales from the single monomer to the entanglement
network and beyond. These experiments reveal the basic relaxation processes
related to monomeric friction, the intermediate scale Rouse dynamics as well
as the entanglement controlled dynamics. I will discuss the effects of the filler
concentration on the polymer conformation as well as on the dynamics on the
various important length scales. Finally the microscopic data are related to re-
sults from rheology. Thereafter I will turn to proteins and present neutron spin-
echo experiments on the inter domain motions that are important in promoting
biochemical function. I shall discuss the cleft opening dynamics of alcohol de-
hydrogenase that enables the binding and release of the functional important
cofactor. Furthermore, I will address the large scale motions in phosphoglyc-
erate kinase, an important enzyme in the glycolitic pathway that catalyses the
recharging of ADP to ATP. The observed dynamics show that the protein has
the flexibility to allow fluctuations and displacements that seem to enable the
function of the protein.
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Structural changes and phase behavior of densely
packed microgel particles

Urs Gasser,1 J.J. Lietor-Santos,2 V. Staedele,1 E. S. Herman,3

P. Mohanty,4 J. Crassous,5 D. Paloli,4 K. van Gruijthuijsen,5 M.
Obiols-Rabasa,4 A. Stradner,5 P. Schurtenberger,4 L.A. Lyon,3

and A. Fernandez-Nieves2

1Laboratory for Neutron Scattering, Paul Scherrer Institut, 5232,
Villigen, Switzerland
2School of Physics, Atlanta GA, USA
3School of Chemistry and Biochemistry, Atlanta GA, USA
4Physical Chemistry, Lund, Sweden
5Adolphe Merkle Institute, Marly, Switzerland

Colloidal suspensions of microgel particles are systems of great interest for
applications and fundamental studies due to their reversible responsiveness
to changes of their environment, such as temperature or hydrostatic pressure.
Although it has been shown that microgel particles behave like hard spheres
under many circumstances [1], they can reach states that are far beyond hard
spheres due to their softness, especially at high concentrations [2]. We focus
on highly concentrated poly(N-isopropylacrylamide) (pNIPAM) microgels and
their volume transition as a function of temperature and hydrostatic pressure
[3] and their form factors in highly overpacked states with effective volume
fractions above random close packing. SANS and confocal microscopy
measurements show that the particles shrink to some extent and interpenetrate
in very densely packed suspensions. The SANS studies were carried out using
contrast matching methods allowing the direct measurement of the form factor
at very high concentrations [4]. The confocal microscopy study was done with
particles dyed with two fluorescent dyes to allow the observation of particle
overlap via color discrimination. Furthermore, small-angle X-ray scattering
investigations of the formation and structure of crystal in dense pNIPAM
suspensions are presented and compared to expectations from theoretical work
and simulations [5] as well as the behavior of hard spheres.

[1] J. D. Debord and L. A. Lyon, J. Phys. Chem. B, 104, 6327 (2000);
P. S. Mohanty and W. Richtering, J. Phys. Chem. B, 112, 14692 (2008); J.
Mattsson et al., Nature (London), 462, 83 (2009).
[2] A. S. Iyer and L. A. Lyon, Angew. Chem., Int. Ed., 48, 4562 (2009).
[3] J.-J. Lietor-Santos et al., Macromolecules, 42, 6225-6230 (2009); J.-J.
Lietor-Santos et al., J. Chem. Phys., 133, 034901 (2010).
[4] M. Willner et al., Macromolecules, 27, 3821 (1994).
[5] D. Gottwald et al., Phys. Rev. Lett., 92, 068301 (2004).
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Spontaneous formation of finite-size colloidal
aggregates

Willem Kegel

University, Van’t Hoff Laboratory, 3584 CH, Utrecht, The Netherlands

An overview is given of finite-size structures formed by colloids or macro-
molecular objects. These structures can be stabilized by electrostatics,
geometry (’patchy interactions’), or both. In particular, I will address: (1)
two-dimensional structures of polyoxometalates (POMs) and apoferritin [1];
(2) a new class of solid-stabilized emulsions [2]; and (3) colloidal molecules
with well-defined bond angles [3]. As relevant to (1) and (2), it will be argued
that the relatively long-range nature of electrostatic interactions as well as
the entropy associated with ionization are determining factors in stabilizing
finite-size structures.

[1] A.A. Verhoeff et al., Phys. Rev. Lett., 99, 066104, (2007); E. Mani
et al., J. Phys. Chem. C, 114, 7780 (2010).
[2] S. Sacanna, W.K. Kegel and A.P. Philipse, Phys. Rev. Lett., 98, 158301,
(2007); W.K. Kegel and J. Groenewold, Phys. Rev. E, 80, 030401 (R), (2009).
[3] D.J. Kraft, J. Groenewold, and W.K. Kegel, Soft Matter, 5, 3823, (2009);
D.J. Kraft et al., J. Am. Chem. Soc., 131, 1182, (2009).
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Packings of soft colloids

Primoz Ziherl

University of Ljubljana, Jadranska 19, SI-1000, Ljubljana,
Slovenia

The ever broader palette of micro- to nanometer-size particles with pronounced
softness has changed the way we think about structure formation in colloids.
Polymer microspheres, hydrogel particles, star polymers, dendrimer micelles,
etc. all exhibit a considerable degree of deformation or interpenetration at large
densities where the soft interparticle repulsion is more prominent than in the
fluid phase. What are the main qualitative features of the phase diagram of soft
spheres? How are the details of the potential reflected in the phase sequence?
We review the experimental studies as well as the theoretical predictions, and
we discuss the unifying aspects of both observations and models. In particular,
we focus on particles with core-corona architecture and on the various variants
of the penetrable sphere potential as the simplest model of soft colloids.
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Structuring nanoemulsions

Thomas Mason

University of California–Los Angeles, 607 Charles E. Young Drive East,
90095, Los Angeles, USA

Long-lived metastable oil-in-water nanoemulsions having controlled droplet
sizes down to micellar dimensions can be produced through a combination of
high-flow emulsification and evaporative ripening. Condensation, separation,
and recirculation of a low molecular weight oil component provide a green pro-
cess that eliminates the undesirable potential impact of solvent release. Self-
assembly of viral capsid protein around nanodroplets that are as small as wild-
type virions yields virus-like droplets, a platform for displaying proteins in or-
dered and disordered dense states. Alternatively, by tuning the molecular prop-
erties of synthetic block copolypeptides that have hydrophilic and hydrophobic
segments, it is possible to form sub-100 nm double water-in-oil-in-water na-
noemulsions that can carry both oil-soluble and water-soluble cargos. Struc-
turing nanoemulsions through a combination of molecular design and physical
processes is yielding advanced out-of-equilibrium soft matter systems.
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Small matters: a soap opera of SDS, oil and water
at the nanoscopic oil droplet/water interface

Sylvie Roke

École Polytechnique Fédérale de Lausanne (EPFL), Station 17,
CH-1015, Lausanne, Switzerland

Surfactants such as sodium dodecylsulphate (SDS) consist of a hydrophobic
and a hydrophilic part. The mixing of the hydrophilic part with water and the
mixing of the hydrophobic part with oil is lowering the interfacial tension on
planar oil/water interfaces. It is commonly expected that interfacial tension
lowering should also take place on the interface of nanoscopic oil droplets in
water. Surprisingly, nonlinear light scattering [1] experiments show otherwise.
In these experiments we have measured the unique and exclusive interfacial
response of SDS surfactant [2], hexadecane oil [3] and water [4] at the interface
of nanoscopic oil droplets in water. We have measured both the molecular
conformation of the mentioned species, as well as the interfacial adsorption
isotherm of SDS. We find that the interfacial density of adsorbed SDS is
at least one order of magnitude lower than that at a corresponding planar
interface [2]. The derived maximum decrease in interfacial tension is only 5
mN/m, instead of the 40 mN/m that is found at the equivalent planar interface.
The resulting molecular conformation of oil and surfactant indicates that the
hydrophobic part of the surfactant does not appear to interact with the oil.
Further measurements on the neat oil-water interface, in combination with zeta
potential measurements show that the average interfacial structure of water at
the surfactant-free droplet interface is identical to the water orientation on a
negatively charged oil/droplet water interface. There is, however, no evidence
of OH-adsorption.

[1] S. Roke, Nonlinear optical spectroscopy of soft matter interfaces,
Chem. Phys. Chem., 10, 1380-1388 (2009).
[2]H. B. de Aguiar, A. G. F. de Beer, M. L. Strader, and S. Roke, The Interfacial
Tension of Nanoscopic Oil Droplets in Water Is Hardly Affected by SDS
Surfactant, J. Am. Chem. Soc. 132, 2122-2123 (2010).
[3] H. B. de Aguiar, M. L. Strader, A. G. F. de Beer and S. Roke, Surface
structure of SDS Surfactant and oil at the oil-in-water droplet liquid/liquid
interface: A manifestation of a non-equilibrium surface state, J. Phys. Chem. B
115, 2970-2978 (2011).
[4] R. Vacha, S. Rick, P. Jungwirth, A. G. F. de Beer, H. B. de Aguiar, J-S
Samson, and S. Roke, The structure and charge of water around a surfactant free
oil in water emulsion, J. Am. Chem. Soc. (2011). doi.org/10.1021/ja202081x
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Formation of molecular clusters and aerosol
particles

Paul Wagner1 and Paul Winkler2

1University of Vienna, Boltzmanngasse 5, A 1090, Vienna,
Austria
2National Center for Atmospheric Research, Boulder, Colorado,
USA

Gas to liquid phase transitions are important processes in materials science,
fluid dynamics, aerosol physics and atmospheric science including cloud
microphysics and chemistry. The recent decade of atmospheric observations
has demonstrated nucleation to be a frequent phenomenon in the global atmo-
sphere [1]. Observations suggest that nucleation and condensational growth are
uncoupled [2]. Therefore the activation mechanism of small clusters is of vital
importance. Here we are presenting some of our recent studies of nucleation
and condensation processes at the Vienna expansion chamber system [3].
Measurements of drop growth kinetics provided a direct determination of the
strongly debated mass accommodation coefficient for water vapour [4]. Exper-
iments on heterogeneous nucleation in n-propanol vapour allowed for the first
time to bridge the scale from molecular clusters to nanoparticles [5]. The onset
vapour supersaturations required for activation of nanoparticles were found to
be well below the Kelvin prediction. This observation is particularly important
in connection with the detection efficiency of Condensation Particle Counters.
Furthermore, for charged seed particles an enhancement of heterogeneous
nucleation and a significant sign preference were observed. Studies of the
temperature dependence of heterogeneous nucleation resulted in unexpected
behaviour [6]. Recently we became interested in the heterogeneous nucleation
on single ion molecules. Evaluations based on the nucleation theorem enabled
us to obtain the size of critical clusters and we found satisfactory agreement
with the Kelvin-Thomson equation.

[1] M. Kulmala and V.-M. Kerminen, Atmos. Res. 90, 132 (2008).
[2] M. Kulmala et al., Nature 404, 66 (2000).
[3] P.E. Wagner et al., Phys. Rev. E 67, 021605 (2003).
[4] P.M. Winkler et al., Phys. Rev. Lett. 93, 075701 (2004).
[5] P.M. Winkler et al., Science 319, 1374 (2008).
[6] S. Schobesberger et al., ChemPhysChem 11, 3874 (2010).
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Ab-initio simulations of water at ambient

conditions and under confinement

Giulia Galli

University of California, Davis, 1 Sheilds Ave, 95616, Davis,
USA

The first principles description of the properties of liquid water is an ongoing
challenge, originating from the presence of several different bonding configura-
tions which are not equally well described by any of the known density func-
tionals. We will discuss results for pure water and water confined within non
polar surfaces obtained with ab-initio simulations using several local and non
local density functionals, and we will use these results to highlight the major
challenges involved in the simulation of hydrogen fluids from first principles.
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Biomembrane shape and volume dynamics to the
limit of fractal ruptures

Owe Orwar

Chalmers University of Technology, 41296, Göteborg, Sweden

Organelles are nano-scale, pleiomorphic systems with a capacity for shape
changes that are essential for their function as exemplified in mitochondrial bio-
genesis. In these systems, transport, mixing, and shape changes can be achieved
at or very close to thermal energy levels. In further contrast to macroscopic
systems, mixing by diffusion is extremely efficient, and the kinetics of embed-
ded reactions can be controlled by shape- and volume changes. The coupling
between shape changes, and chemical activity is often strong, and cases will
be presented where chemistry affect reactor geometry, where reactor geometry
affect chemistry, and cases where the two properties feed back on each other
in self-regulating systems. We will show several non-intuitive and fascinating
dynamic properties in a variety of artificial systems including front propaga-
tion in reaction-diffusion networks consisting of nanotube-conjugated contain-
ers, oscillatory behavior for reversible reactions in volume-fluctuating systems,
and filtering of chemical signals in small networks. Using volume fluctuations
in mitochondria as an example, we show that the rate of product formation of
an enzymatic reaction can be regulated by simple volume transitions. Finally,
we will report on a new rupture mechanics in bilayer membranes spreading on
solid supports resembling the double bilayer membranes of mitochondria: in
one instance fingering instabilities were seen resulting in floral-like pores and
in another, the rupture proceeded in a series of rapid avalanches causing fractal
membrane fragmentation. The intermittent character of rupture evolution and
the broad distribution in avalanche sizes is consistent with crackling-noise dy-
namics. Such noisy dynamics appear in fracture of solid disordered materials, in
dislocation avalanches in plastic deformations and domain wall magnetization
avalanches. We also observed similar fractal rupture mechanics in spreading
cell membranes.
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Adsorption and phase transitions of fluids in
confinement: In-situ studies with X-rays, neutrons
and light

Oskar Paris

Montanuniverstität Leoben, Franz-Josef Strasse 18, 8700, Leoben,
Austria

Mesoporous silica materials with cylindrical pores of some nanometres in di-
ameter on a highly ordered hexagonal pore lattice are used as model systems
to assess the behaviour of fluids in confinement experimentally. Synchrotron
radiation based small angle X-ray scattering (SAXS) and small-angle neutron
scattering (SANS) are very powerful tools to investigate in-situ liquid film for-
mation and capillary condensation of fluids as well as their freezing and melting
in these systems. Combined with in-situ spectroscopic techniques such as Ra-
man scattering, these methods can for instance be uniquely combined to shine
new light on the phase behaviour of water in strong confinement.

Besides its influence on the phase behaviour, confinement induces strong in-
teraction of the fluids with the solid pore walls, which manifest themself in a
fluid pressure dependent, non-monotonous deformation of the solid host mate-
rial. This deformation can be monitored in-situ by measuring the pore lattice
strain with X-ray diffraction, allowing for instance to obtain nanomechanical
properties of the materials. The basic mechanisms of the adsorption induced
deformation can be understood by combining fundamental principles of fluid
thermodynamics with solid mechanics.
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Manipulating liquid structure with pressure

R.J. Hemley,1 C. Tulk,2 J. Molaison,2 A. M. Dos Santos,2 and
Malcolm Guthrie1

1Geophysical Laboratory, Carnegie Institution of Washington,
Washington, USA
2Oak Ridge National Laboratory, Oak Ridge, USA

Pressure is a powerful modifier of structure. In addition to inducing substan-
tial changes in the local molecular arrangements in the liquid state, it is also
capable of fundamentally altering the character of molecules themselves. In
terms of characterising these changes in structure, diffraction is a powerful tool
that spans all of the relevant length scales a liquid. Early in situ high-pressure
diffraction studies of glasses included synchrotron x-ray studies of the structure
of SiO2 glass. In recent years, this approach has been extended with an empha-
sis on not only reaching higher pressures and temperatures, but also achieving
higher quality data. In addition, we have made substantial progress towards de-
veloping high-pressure neutron diffraction capability in order to examine how
light, molecular liquids respond to compression. In this overview, the devel-
opment of high-pressure diffraction from liquids and amorphous materials will
be outlined, including work on H2O as well as our recent diffraction studies of
liquid ammonia and ammonia-water mixtures.
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The liquid-liquid phase transition in simulations of
supercooled water: local order parameters,
mixturelike behavior, and glass-liquid coexistence

Peter Poole

St. Francis Xavier University, Physics Department, B2G2W5,
Antigonish, Canada

In simulations of a waterlike model (ST2) that exhibits a liquid-liquid phase
transition, we examine a number of structural local order parameters for their
ability to distinguish the low density liquid (LDL) from the high density liquid
(HDL). We thereby test for the occurrence of a thermodynamic region above
the liquid-liquid critical temperature in which the liquid can be modeled as a
two-component mixture. We find that the best choice is to assign each molecule
to one of two species based on the distance to its fifth-nearest neighbor. We then
evaluate the concentration of each species over a wide range of temperature and
density. Our concentration data compare well with mixture-model predictions
based on a modified regular solution theory in a region between the liquid-liquid
critical temperature and the temperature of maximum density. Fits of the model
to the data in this region yield accurate estimates for the location of the critical
point. We also show that the liquid outside the region of density anomalies is
poorly modeled as a simple mixture. Below the critical temperature, local order
parameters facilitate the visualization of LDL-HDL coexistence, including
under conditions of glass-liquid coexistence, where the HDL phase remains
a liquid, whereas the LDL phase has become an amorphous solid on our
computational time scale.

M. Cuthbertson and P.H. Poole, Phys. Rev. Lett. 106, 115706 (2011).
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Amorphous ices - the glassy states of water: the
calorimetric glass-liquid transition of HDA

Katrin Winkel,1 Philip Handle,1 Michael S. Elsaesser,1 Markus
Seidl,1 Erwin Mayer,1 and Thomas Loerting1

1University of Innsbruck, Institute of Physical Chemistry, Innrain 52a,
6020, Innsbruck, Austria

The discovery of high- (HDA) and low-density amorphous ice (LDA) [1]
prompted the question whether this phenomenon of polyamorphism is con-
nected to the occurrence of more than one supercooled liquid. Alternatively,
amorphous ices have been suggested to be of nanocrystalline nature, unrelated
to liquids. In case of LDA the connection to the low-density liquid (LDL) was
inferred from several experiments including the observation of the calorimetric
glass → liquid transition at ambient pressure [2], whereas for HDA experimen-
tal evidence for a thermodynamic connection to the high-density liquid (HDL)
has been missing so far.

We here present calorimetric measurements on HDA, showing for the first
time that HDA transforms into a liquid upon heating even at ambient pressure.
Differential scanning calorimetry (DSC) is an established experimental method
to investigate vitrification and devitrification transitions between glasses and
liquids. Using a relaxed form of high-density amorphous ice [3, 4] we detect the
glass → liquid transition HDA → HDL as a sudden increase in heat capacity.
Additionally we repeatedly cycle between the ultraviscous high-density liquid
state HDL and the non-crystalline solid state HDA. This switching between
solid-like and liquid-like behaviour confirms the existence of an ultraviscous
high-density bulk liquid at ambient pressure. These findings strengthen the
two-liquid theories of water.

[1] O. Mishima, L. D. Calvert, E. Whalley, Nature 314, 76 (1985).
[2] I. Kohl, L. Bachmann, A. Hallbrucker, et al., Phys.Chem.Chem.Phys. 7,
3210 (2005).
[3] R. J. Nelmes, J. S. Loveday, T. Straessle, et al., Nature Physics 2, 414
(2006).
[4] K. Winkel, M. S. Elsaesser, E. Mayer, et al., J. Chem. Phys. 128, 044510/1
(2008).
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Shear banding and related instabilities in
entangled polymers

Peter Olmsted

University of Leeds, School of Physics Astronomy, LS2 9JT, Leeds,
United Kingdom

Shear banding is now well established in emulsions, pastes, surfactant solutions,
colloidal suspensions, and liquid crystalline materials. The variety and range of
these phenomena continue to astonish. Arguably the first prediction of shear
banding was the Doi-Edwards theory for entangled polymers, in the 1970s.
However, it took until the 2000s before convincing evidence of banding was
established in polymer solutions, by which time the theory and understanding of
the dynamics of entangled polymers had advanced considerably. I will discuss
how the new experimental and theoretical results in this area (shear banding,
edge fracture, etc) have helped us understand (1) the dynamics of entangled
polymeric materials (including wormlike micelles), and more generally (2)
structure formation, instabilities, and dynamics of viscoelastic shear banding
materials with very strong elastic behaviour.

[Work performed in collaboration with JM Adams (Surrey), OS Agime-
len (Leeds), SM Fielding (Durham), and S Skorski (Leeds)].
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Effects of medium viscoelasticity on particle
dynamics and structures in suspensions

Jan Vermant,1 Sylvie Van Loon,1 and Gaetano D’Avino2

1Department of Chemical Engineering, K.U. Leuven, W. de Croylaan
46, 3001, Leuven, Belgium
2Center for Advanced Biomaterials for Health Care, Naples,
Italy

Hydrodynamic forces play a central role in suspension mechanics and rheology.
For suspending media with Newtonian properties, the hydrodynamic effects
are fairly well understood. However, when particles are dispersed in a fluid
with a complex rheological behaviour, there are some intriguing differences
to be observed. A long standing observation is that particles in viscoelastic
matrices, such as polymer solutions, will form particle chains in shear flow
even at concentrations which would be considered dilute in a Newtonian
matrix [1,2]. In some other cases, suspensions will exhibit shear thickening
at extremely low volume fractions. An understanding of the changes in the
hydrodynamic forces acting upon particles suspended in a range of viscoelastic
properties will be discussed. The effect of the suspending fluid rheology on the
motion of single particles (rotation and migration), the interactions between
particles and the mechanisms by which particle necklaces and sheets form will
be discussed by comparing experiments with recent simulation results [3,4]. To
evaluate the effects of differences in rheological properties of the suspending
media, fluids have been selected which highlight specific constitutive features,
including a reference Newtonian fluid, a single relaxation time wormlike
micellar surfactant solution, a broad spectrum shear-thinning elastic polymer
solution and a constant viscosity, highly elastic Boger fluid. Experiments using
video-microscopy and rheology will be compared to simulation results using a
finite element method.

[1] J. Michele, R. Patzold, R. Donis, Alignment and aggregation effects
in suspensions of spheres in non-newtonian media, Rheol. Acta 16, 317-321
(1977).
[2] R. Scirocco, J. Vermant, J. Mewis, Effect of the viscoelasticity of the
suspending fluid on structure formation in suspensions, J. Non-Newtonian
Fluid Mech. 117, 183-192 (2004).
[3] F. Snijkers, G. D’Avino, M. Hulsen F. Greco, P. L. Maffettone, J. Vermant,
Effect of Viscoelasticity on the Rotation of a Sphere in Shear Flow, J. Non.
Newt. Fluid. Mech. 166, 363-372 (2011).
[4] R. Pasquino, F. Snijkers, N. Grizzuti, J. Vermant, Directed Self-Assembly
of Spheres into a Two-Dimensional Colloidal Crystal by Viscoelastic Stresses,
Langmuir 26, 3016-3019 (2010).
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Control of biopolymer network elasticity through
architecture and molecular-motor activity

Fred MacKintosh

VU University, Physics/FEW, 1081HV, Amsterdam, Netherlands

Much like the bones in our bodies, the cytoskeleton consisting of filamentous
proteins largely determines the mechanical response and stability of cells. In
addition to their important role in cell mechanics, cytoskeletal networks have
also provided new insights and challenges for polymer physics and rheology.
There is increasing evidence that the network response of these systems is gov-
erned by the compliance and dynamics of the cross-links, many of which are
transient in nature. Here we study the effects of both local network architecture
and dynamic cross-linking in disordered fibrous networks. In the cell, biopoly-
mer gels are far from equilibrium in a way unique to biology: they are subject
to active, non-thermal internal forces generated by molecular motors. We also
describe recent theoretical and experimental results on active networks in vitro
that demonstrate significant non-equilibrium fluctuations due to motor activity.
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Bacteria as active colloids

Wilson Poon

The University of Edinburgh, School of Physics & Astronomy, EH9 3JZ,
Edinburgh, United Kingdom

I will review the physics of suspensions of motile bacteria as active colloids.
In particular I will examine the behaviour of such suspensions with added non-
adsorbing polymer, causing a depletion attraction between the cells. Experi-
ments show that the added polymer is still able to cause phase separation, but
at a higher concentration. This can be interpreted as the motile bacteria hav-
ing a higher ’effective temperature’. Pre-transition clusters rotate coherently -
they are self-assembled ’motors’. I will also introduce a new technique for the
high-throughput characterisation of the motility of motile colloids (bacteria or
synthetic), and demonstrate the use of this technique in a study of the effect of
motile bacteria on the diffusivity of non-motile cells in the same suspension.
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Transverse excitations in liquid Sn

Shinya Hosokawa,1 S. Munejri,1 Masanori Inui,1 Y. Kajihara,1

Wolf-Christian Pilgrim,2 Y. Ohmasa,1 Alfred Q. R. Baron,3 F.
Shimojo,4 and Kozo Hoshino1

1Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, 7315193,
Hiroshima, Japan
2Philipps University of Marburg, Marburg, Germany
3RIKEN SPring-8 Center, Hyogo, Japan
4Kumamoto University, Kumamoto, Japan

In 1973, pioneering molecular dynamics (MD) simulations carried out by
Levesque et al. [1], predicted the existence of transverse acoustic (TA)
excitation modes in simple liquid systems. However, they were not detected by
inelastic scattering experiments. Thus, it was considered that the TA modes in
simple liquids could not be experimentally observed. Recently, the TA modes
were observed by a careful inelastic x-ray scattering (IXS) experiment on liquid
Ga [2]. An orbital-free ab initio MD simulation clearly supported this finding.
From the detailed analysis for the S(Q, ω) spectra, a lifetime of 0.5 ps and the
propagating length of 0.5 nm could be estimated for the TA modes. These may
correspond to the lifetime and size of cages formed instantaneously in liquid
Ga.In order to determine if the TA mode may be detected more generally in
liquid metals, we carried out IXS experiments and ab initio MD simulation on
liquid Sn near the melting point. The experiment was performed using high
energy resolution IXS spectrometer installed at BL35XU/SPring-8. The ab
initio MD calculation was based on the density functional method with 64 Sn
atoms. The simulation was performed for 30,000 steps with a time step of 3.6
fs. TA excitation modes were observed in liquid Sn, and the excitation energies
are, again, in good agreement with the results of the MD simulation. By
comparing current correlation spectra between the experimental and theoretical
results quantitatively, we concluded that the TA mode are detected through the
quasi-TA branches in the LA current correlation spectra. In the presentation,
we will show detailed results of the data analysis, and discuss microscopic dy-
namics of liquid Sn in relation to cage effects and microscopic elastic properties.

[1] D. Levesque et al., Phys. Rev. A, 7, 1690 (1974).
[2] S. Hosokawa et al., Phys. Rev. Lett., 102, 115502 (2009).
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Ions at air-water interface: surface tensions and
surface potentials of electrolyte solutions

Yan Levin

IF-UFRGS, Caixa Postal 15051, 90501-970, Porto Alegre, RS,
Brasil

Availability of highly reactive halogen ions at the surface of aerosols has
tremendous implications for the atmospheric chemistry. Yet neither simula-
tions, experiments, nor existing theories are able to provide a fully consistent
description of the electrolyte-air interface. In this talk a new theory will be
presented which allows us to explicitly calculate the ionic density profiles, the
surface tension, and the electrostatic potential difference across the solution-air
interface [1,2]. The theory takes into account both ionic hydration and
polarizability [3]. The theoretical predictions are compared to experiments and
are found to be in excellent agreement. Finally, the implications of the present
theory for stability of lyophobic colloidal suspensions will be considered [4],
shedding new light on one of the oldest puzzles of physical chemistry the
Hofmeister effect.

[1] Y. Levin, A.P. dos Santos, and A. Diehl, Phys. Rev. Lett. 103,
257802 (2009).
[2] A. P. dos Santos, A. Diehl, and Y. Levin, Langmuir 26, 10778 (2010)
[3] Y. Levin, Phys. Rev. Lett. 102, 147803 (2009)
[4] A. P. dos Santos and Yan Levin, Phys. Rev. Lett. (2011) in press
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Liquid-vapor transition in a symmetric binary
mixture of charged colloids

Alberto Parola,1 Davide Pini,2 and Luciano Reatto2

1Dipartimento di Fisica e Matematica, Università dell’Insubria,
Via Valleggio 11, 22100, Como, Italy
2Dipartimento di Fisica, Università degli Studi di Milano, Milano,
Italy

Binary mixtures of equal-sized hard spheres interacting via Yukawa potentials,
repulsive between like and attractive between unlike molecules, can be taken as
a model of a dispersion of two charged colloidal species in an electrolyte solu-
tion. In the limit of zero screening, one recovers the restrictive primitive model
(RPM) of a Coulomb gas, which is known to exhibit peculiar properties, such
as a very low critical density and a strongly asymmetric coexistence curve. The
critical behavior of this model, namely, whether it would belong to the Ising
universality class or rather would remain mean-field-like even asymptotically
close to the critical point, was debated for a long time, and eventually settled
in favor of Ising criticality only by numerical simulation. In this work the hi-
erarchical reference theory (HRT) is applied to a symmetric mixture of charged
Yukawa spheres. We employ the smooth cut-off formulation of HRT, which is
very well suited to Yukawa potentials, and already proved to be quite accurate
in the one-component case. The critical point and phase diagram for different
values of the screening parameter are compared with simulation results. Inter-
estingly, the renormalization-group structure of HRT enables one to ascertain
that the critical behavior does indeed remain Ising-like even in the unscreened
limit, thereby providing a theoretical support to the evidence from simulation.
The issue of the crossover to the asymptotic Ising scaling is also addressed.
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Soft-disk bosons: a minimal model for
supersolidity

Sebastiano Saccani1 and Saverio Moroni2

1SISSA, Via Bonomea 265, 34136, Trieste, Italy
2Istituto Officina dei Materiali del CNR, Trieste, Italy

Using exact numerical techniques, a system of Bose soft-disks in two dimen-
sions is studied. This can be considered as the quantum version of classical sys-
tems of repulsive particles displaying crystalline cluster phases at sufficiently
high densities. The low-temperature phase diagram is explored, and it is shown
that a phase, called supersolid, displaying both a finite superfluid fraction and
a cluster crystal structure exists within a range of the model parameters. The
excitation spectrum of the system in the various phases is studied: an additional
acoustic mode, peculiar to the supersolid, is found. We believe that these prop-
erties are common to a wide range of Bosonic system interacting via repulsive
bounded potentials giving rise to clustering instability, therefore our system can
be considered a ”minimal model” for continuous-space supersolidity.
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Accurate force fields from ab-initio simulations:
the case of aqueous ions

Sami Tazi,1 John Molina,1 Mathieu Salanne,1 Benjamin
Rotenberg,1 and Pierre Turq1

1Physicochimie des Eletrolytes Colloides et Sciences Analytiques
(PECSA), Univ. Pierre et Marie Curie, Case Courrier 51,
4 place Jussieu Batiment F - 7eme etage, 75005, Paris,
France

The development of classical force fields for aqueous ions is a long-standing
issue, due to their importance in many fields. Specific effects, i.e. the effect of
the chemical nature of the ion, play an important role e.g. on DNA solvation
[1] and on the sorption of ions onto mineral surfaces [2]. Molecular dynamics
simulations are an effective tool in the analysis of the chemical and physical
properties of solvated ions in solutions [3]. However, the reliability of their
predictions depends on the quality of the force field used. We discuss here
a method to derive a force field from ab-initio calculations, based on the
force-fitting procedure [4]. Some of the parameters are fitted to ab-initio
forces while others are directly calculated using maximally localized Wannier
functions [5,6]. After describing the method, we illustrate its application to
aqueous chloride, alkaline (Li+, Na+, K+, Rb+ and Cs+) and alkaline-earth
(Mg2+, Ca2+ and Sr2+) ions. We validate the force field, by comparing its
predictions to experimental structural (radial distribution function and EXAFS
spectrum), dynamical (diffusion coefficient) and thermodynamical (Gibbs free
energy of hydration) properties. Attention was also paid to ion-ion interactions
so that the force fields are also able to reproduce crystalline structure of the
corresponding series of chloride compounds.

[1] Heyda et al., J. Phys. Chem. B, 114, 1213 (2010).
[2] Rotenberg et al., Geochim. Cosmochim. Acta, 73, 4034 (2009).
[3] Wernersson and Jungwirth, J. Chem. Theor. Comp., 6, 3233-3240 (2010).
[4] Heaton et al., J. Phys. Chem. B, 110, 11454 (2006).
[5] Rotenberg et al., Phys. Rev. Lett., 104, 138301 (2010).
[6] Molina et al., J. Chem. Phys., 134, 014511 (2011).
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Supercooled water: simulation and experiment

Jose L. F. Abascal,1 Carlos Vega, and Miguel Angel Gonzalez
1Univ. Complutense (Madrid), Depto. Quimica- Fisica, Fac. Quimicas,
Av. Complutense s/n, 28040, Madrid, Spain

In the 1970’s, Angell and coworkers presented strong evidence that the
compressibility along isobars seems to diverge in the supercooled region of
water. In 1992, Poole et al. proposed the existence of a liquid-liquid critical
point (LLCP). Certain experiments seem to support the existence of the LLCP
but there is not yet a conclusive experimental evidence. In this way, computer
simulation may be of great help. Since simulation results are based on approx-
imate water models, some checking is required to demonstrate that the model
represents the behaviour of real water. Recent experimental work allows for
the first time to check the predictive ability of the models in the region where
the LLCP is expected to appear. The comparison of these experimental results
with the predictions for the TIP4P/2005 model show an excellent agreement[1].
Thus, it should be expected that the simulation results for this model are
close (quantitatively) to those of real water. We have carried out extensive
simulations with this model to locate the line of compressibility maxima
(Widom line) and the LLCP[2]. The Widom line has a negative slope in a p-T
diagram and approaches progressively the line of density maxima (TMD) and,
eventually, both lines converge at negative pressures. It is seen that the locus of
the TMD retraces at the crossing point. This fact has important consequences
because it has been demonstrated from thermodynamic considerations that a
reentrant TMD line cannot reach the liquid-vapor spinodal and, thus, the latter
cannot be retracing. Besides, beyond the crossing point between the Widom
line and the TMD, it should appear a line of compressibility minima. All of
these theoretical predictions have been confirmed and numerically evaluated in
our simulations of the TIP4P/2005 model[3].

[1] J. L. F. Abascal and C. Vega, J. Chem. Phys., in press.
[2] J. L. F. Abascal and C. Vega, J. Chem. Phys., 133, 234502 (2010).
[3] M. A. Gonzalez and J. L. F. Abascal, to be submitted.
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A transferable model for water

András Baranyai

Institute of Chemistry, Eötvös Univ., 1117 Pázmány P.s. 1/A, 1117,
Budapest, Hungary

The two most frequently used models of water, TIP3P and SPC/E, form false
geometries of gas phase clusters. [1] We have shown that this problematic
behavior is also present in their many-body structure of ambient liquid water.
[2] For correct results the position of the negative charge for classical models
should be shifted from the oxygen atom towards the hydrogen atoms. [2]
We developed a new model for the water molecule [3] which contains only
three Gaussian charges. Using the gas phase geometry, the dipole moment
of the molecule matches, the quadrupole moment closely approximates the
experimental values. The negative charge is connected by a harmonic spring to
its gas-phase position. The polarized state is identified by the equality of the
intermolecular electrostatic force and the spring force acting on the negative
charge. In each timestep the instantaneous position of the massless negative
charge is determined by iteration. Using the technique of Ewald summation,
we derived expressions for the potential energy, the forces, and the pressure
for Gaussian charges. [3] Our model is capable to provide good estimate for
the properties of gas clusters, ambient water, hexagonal ice, ice III, ice VI, and
several ice VII phases. [3,4] The high-pressure phases are modeled by using
two simple exponentials with r

−6 attractions and a switch function. One of
the exponentials represents the repulsion under low pressure, the other is the
repulsion under high pressure. The switch function varies between 0 and 1 and
portions the two repulsions among the individual particles. The argument of
the switch function is a virial-type net force acting on the molecule. [4]

[1] P. T. Kiss and A. Baranyai, J. Chem. Phys., 131, 204310 (2009).
[2] P. T. Kiss and A. Baranyai, J. Chem. Phys., 134, 054106 (2011).
[3] A. Baranyai and P. T. Kiss, J. Chem. Phys., 133, 144109 (2010).
[4] P. T. Kiss and A. Baranyai, J. Chem. Phys., submitted.
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Water proton’s environment: a new water anomaly
at atomic scale?

Fabio Bruni,1 Alessia Giuliani, and Mari Antonietta Ricci
1Università di Roma Tre, Dipartimento di Fisica, via della vasca navale,
84, 00146, Rome, Italy

We find, by means of a Deep Inelastic Neutron Scattering (DINS) experiment,
a significant excess of proton mean kinetic energy, Ek, in supercooled water,
compared to that measured in stable liquid and solid phases. The observed ex-
cess of proton mean kinetic energy, with respect to theoretical predictions and
measurements in water stable liquid and solid phases, points to a possible link
between the anomalous temperature dependence of water density and the tem-
perature dependence of Ek. In particular, Ek shows a maxima at 277 K, the
temperature of the maximum density of water. This anomalous behavior is con-
firmed by the shape of the measured momentum distribution, thus supporting a
likely occurrence of ground state quantum delocalization of a proton between
the oxygen atoms of two neighboring molecules. These results strongly suggest
a transition from a single-well to a double-well potential felt by the delocalized
proton, with a reduced first neighbor O-O distance, in the supercooled state, as
compared to ambient condition. New DINS data on D2O provide evidence for
isotope quantum effects in the proton single particle dynamics along the hydro-
gen bond. These DINS data support the observation that even small changes
in the short range environment of a water proton have strong influence on its
quantum behavior.

2. Water, solutions and reaction dynamics



O2.4
LH 28
Tue 6
16:30

Order, entropy and water-like anomalies in
tetrahedral liquids

Charusita Chakravarty,1 Manish Agarwal,1 Divya Nayar,1

Shadrack Jabes,1 Waldemar Hujo,2 and Valeria Molinero2

1Department of Chemistry, Indian Institute of Technology Delhi,
Hauz Khas, 110016, New Delhi, India
2Department of Chemistry, Salt Lake City, USA

Tetrahedral liquids can display a number of liquid-state anomalies in com-
parison to simple liquids, such a rise in density on isobaric heating and an
increase in molecular mobility on isothermal compression. Using molecular
dynamics simulations, the interplay between short-range orientational and pair
correlation order in such liquids is compared for three different categories of
tetrahedral liquids: (a) water (b) ionic melts (SiO2, BeF2, GeO2) and (c) liquid
phases of Group IV elements (C, Si and Ge). By studying the evolution of
thermodynamic and structural anomalies as the degree of tetrahedrality is tuned
within the Stillinger-Weber (SW) family of liquids, it is shown that water-like
anomalies emerge at intermediate degrees of tetrahedrality but are absent
in the low- and high-tetrahedrality limits. In the specific case of water, we
consider both atomistic and coarse-grained models of water to understand how
the order-entropy-mobility relationships characteristic of tetrahedral liquids
influence bulk liquid properties as well as hydration.

[1] The Rise and Fall of Anomalies in Tetrahedral Liquids, W. Hujo, B.
S. Jabes, V. K. Rana, C. Chakravarty, and V. Molinero, J. Stat. Phys., submitted.
[2] Thermodynamic, Diffusional and Structural Anomalies in Rigid-body
Water Models, M. Agarwal, M. P. Alam, and C. Chakravarty, J. Phys. Chem.
B, in press.
[3] Relationship between Structure, Entropy and Diffusivity in Water and
Water-like Liquids, M. Agarwal, M. Singh, R. Sharma, M. P. Alam, and C.
Chakravarty, J. Phys. Chem. B, 114, 6995 (2010).
[4] Tetrahedral Order, Pair Correlation Entropy and Water-like Liquid State
Anomalies: Comparison of GeO2 with BeF2, SiO2 and H2O, B. S. Jabes, M.
Agarwal and C. Chakravarty, J. Chem. Phys., 132, 234509 (2010).
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Heat capacity measurements of water at negative
pressure

Eugene Choi1 and Abraham Stroock
1Cornell University, 120 Hall, 14853, Ithaca, New York, USA

Liquid water exhibits many anomalous properties. Despite extensive study,
the origin of these anomalies remains unclear. Among the most intriguing of
these properties are the measured divergences in thermodynamic and dynamic
parameters of liquid water in the supercooled state [1]. Several observations
motivate the pursuit of analogous measurements in the stretched, superheated
state of liquid water: 1) there is a dearth of experimental data of any type in
this regime [2], 2) theoretical [3] and computational [4] studies point to the
possibility of unusual features in the phase diagram at negative pressures,
and 3) controversy remains about the locations and shapes of the kinetic
stability limit and the spinodal that bound this metastable regime [5]. In this
presentation, we will report on our measurements of the heat capacity of water
in this stretched regime. Our method exploits the metastable equilibrium
between liquid water and sub-saturated vapors through an organic hydrogel
membrane [6]. This technique allows for macroscopic volumes of liquid
water to be put into a stretched state at well-defined temperature and chemical
potential. We will present heat capacity measured in such a system and
compare with predictions based on extrapolations of an empirical equation of
state. Finally, we will conclude with a discussion of the relevance of these
measurements to the global understanding of water’s thermodynamic properties.

[1] C. A. Angell, Ann. Rev. Phys. Chem., 34, 593 (1983).
[2] K. Davitt et al., J. Chem. Phys., 133, 174507 (2010).
[3] P. H. Poole et al., Phys. Rev. Lett., 73, 12 (1994).
[4] I. Brovchenko et al., J. Chem. Phys., 123, 044515 (2005).
[5] F. Caupin and E. Herbert, C. R. Physique, 7, 1000 (2006).
[6] T. D. Wheeler and A. D. Stroock, Nature, 455, 208 (2008).
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Relationship between the phase diagram, the
glass-forming ability, and the fragility of a
water/salt mixture

Mika Kobayashi1 and Hajime Tanaka1

1Institute of Industrial Science, University of Tokyo, Komaba 4-6-1,
Meguro-ku, 153-8505, Tokyo, Japan

Water is known to be an exceptionally poor glass former, which is a significant
drawback in the low-temperature storage of food and biomatter. This is re-
garded as one of the anomalous features of water, but its link to other anomalies
remains elusive. We experimentally show that the glass-forming ability and
the fragility of a water/salt mixture is closely related to its equilibrium phase
diagram [1]. The relationship found in this study can naturally be explained by
consistency between local tetrahedral order stabilized by hydrogen bonding and
the equilibrium crystal structures. The key underlying concept is frustration
between crystallization and local tetrahedral ordering, which we propose
controls both glass-forming ability and fragility [2,3]. Relying on the same
role of salt and pressure, which commonly breaks tetrahedral order, we may
apply this finding in a water/salt mixture to pure water under pressure. This
scenario not only explains unusual behavior of water-type liquids such as water,
Si and Ge under pressure, but also may provide a general explanation on the
link between the equilibrium phase diagram, the glass-forming ability, and the
fragility of various materials.

[1] M. Kobayashi and H. Tanaka, Phys. Rev. Lett., 106, 125703 (2011).
[2] H. Tanaka, J. Phys.: Condens. Matter, 15, L703 (2003).
[3] H. Tanaka, J. Chem. Phys., 112, 799 (2000).
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Second generation Car-Parrinello molecular
dynamics: theory and application to the
liquid/vapor interface

Thomas Kühne

Johannes Gutenberg University Mainz, Staudinger Weg 9, 55128,
Mainz, Germany

A new computational method [1] to accelerate density functional theory-based
ab-initio molecular dynamics simulations is presented. In the spirit of the
Car-Parrinello [2] approach during the dynamics the electronic wavefunctions
are not self-consistently optimized. However, in contrast to the original
scheme, large integration time steps can be used. By this means the best of
the Born-Oppenheimer and the Car-Parrinello methods are unified, which not
only extends the scope of either approach, but allows for ab-initio simulations
previously thought not feasible. The effectiveness of this new approach is
demonstrated on liquid water at ambient conditions [3], and on the correspond-
ing liquid/vapor interface [4].

[1] T. D. Kühne, M. Krack, F. Mohamed, and M. Parrinello, Phys. Rev.
Lett., 98, 066401 (2007).
[2] R. Car and M. Parrinello, Phys. Rev. Lett., 55, 2471 (1985).
[3] T. D. Kühne, M. Krack, and M. Parrinello, J. Chem. Theory Comput., 5,
235 (2009).
[4] T. D. Kühne, T. A. Pascal, E. Kaxiras, and Y. Jung, J. Phys. Chem. Lett., 2,
105 (2011).
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On a use of negative pressures and cavitation to
create motion in plants

Xavier Noblin,1 Nicolas Rojas,2 Jared Westbrook,3 Coraline
Llorens,2 Mederic Argentina,2 and Jacques Dumais4

1LPMC, UMR6622, CNRS-UNSA, Parc Valrose, Av. Vallot, 06108,
Nice Cedex 2, France
2LJAD, UMR 6621, CNRS-UNSA, Nice Cedex 2, France
3University of Florida, Gainesville, FL, USA
4Harvard University, Department OEB, Cambridge, MA, USA

Negative pressures are used by trees to move water from roots to leaves. Un-
fortunately this is at risk for plants when water is lacking. Here we present
another beautiful example taken from plants where cavitation is not a drawback
but the triggering mechanism of a fast motion: the use of water under negative
pressures by ferns. In these organisms, the reproductive particles (spores) are
ejected at a speed around 10 m/s in air. The mechanism consists in the fast
released of a spring-like structure, the sporangium, after its opening due to de-
hydration. Thirteen cells constitute the sporangium’s annulus that surrounds the
spores over 500 microns. Through a thin membrane, water inside these cells
evaporates and due to cohesive forces, it imposes strong stresses on the annu-
lus which get deformed. When the negative pressure in the cells can no more
be sustained, violent nucleation of cavitation bubbles leads to the fast closure
of this natural catapult. We have studied the mechanism of opening, bubble
nucleation and closing using high speed imaging. From our model, we have
determined that the negative values reached for the water pressure in the cells
that can be of the order of – 100 bar. We also show here how cavitation is used
to generate a global motion of the structure.
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Relationship between structural fluctuations and
dynamical disorder in water: an explanation for the
non-Arrhenius behavior of cold water reorientation

Guillaume Stirnemann,1 Fabio Sterpone,2 James T. Hynes,3 and
Damien Laage1

1École Normale Supérieure, Département de Chimie, 75005, Paris,
France
2Institut de Biologie Physico-Chimique, Paris, France
3University of Colorado Boulder, Boulder CO, USA

In this contribution, we study the water reorientation mechanism and dy-
namics below room temperature down to the supercooled regime, where it
exhibits a non-Arrhenius behavior, with an increasing activation energy at
lower temperatures [1, 2]. Based on molecular dynamics simulation results
in quantitative agreement with the available experimental data (femtosecond
infrared anisotropy [3, 4], NMR [5], SAXS [6] ), we find that the jump
reorientation mechanism determined at room temperature and involving large
amplitude jumps [7] remains the dominant reorientation pathway for water at
lower temperatures. We show that the jump kinetics sensitively depends on
the local water structure, as measured through the Voronoi cell sphericity. The
distribution of such local structures is unimodal at all investigated temperatures,
and no evidence is found of two distinct water structures in equilibrium. Our
results suggest that the non-Arrhenius behavior is not due to enhanced structural
fluctuations at low temperature. Through a kinetic model, we establish the
origin of the broadening distribution of jump rate constants at low temperature.
The resulting increasing dynamical disorder can simultaneously explain the
non-Arrhenius behavior of the reorientation dynamics and the non-exponential
anisotropy relaxation.

[1] Speedy, R. J. and Angell, C. A., J. Chem. Phys., 65, 851–8 (1976).
[2] Richert, R., J. Phys.: Condens. Matter, 14, R703–38 (2002).
[3] Tielrooij, K. J., Petersen, C., Rezus, Y. L. A., and Bakker, H. J., Chem.
Phys. Lett., 471, 71–4 (2009).
[4] Moilanen, D. E., Fenn, E. E., Lin, Y. S., Skinner, J. L., Bagchi, B., and
Fayer, M. D., Proc. Natl. Acad. Sci. USA, 105, 5295–300 (2008).
[5] Ludwig, R., Weinhold, F., and Farrar, T. C., J. Chem. Phys., 103, 6941–50
(1995).
[6] Huang, C. et al., Proc. Natl. Acad. Sci. USA, 106, 15214–18 (2009).
[7] Laage, D. and Hynes, J. T., Science, 311, 832–5 (2006).

2. Water, solutions and reaction dynamics



O2.10
LH 28
Tue 6
17:10

Time-resolved laser spectroscopy on bulk and
confined water

Renato Torre

European lab. for non-linear spectroscopy, Via Carrara 1,
Sesto Fiorentino, 50019, Firenze, Italy

Despite the paramount importance and the continuous research effort, water
remains a cryptic liquid. The water anomalies did not find a complete explana-
tion and still a large debate is present about the physic models able to describe
them. The supercooled phase remains the benchmark of water understanding
where the structural and dynamic features are expected to give clear indications
on the elusive water nature. Unfortunately supercooling of bulk water is limited
by the homogeneous nucleation limit (- 42 C at atmospheric pressure) so that
the direct investigation of deep supercooled bulk water is presently impossible.
Differently if water is confined in nano-pores its supercooling can be extended
below the nucleation limit giving access to the, so called, water “no-man land”.
Nevertheless the diameter of the nano-pores must be very small, typically <

2 nm, in order to avoid freezing. Here an extra issue is added: how much are
the properties of confined water different from that of its bulk phase? In this
scenario, we studied the water dynamics by new time-resolved laser techniques
[1] that enable to achieve new valuable information on water physics, both on
the supercooled bulk phase [2] and the nano-confined water [3]. In particular,
we will report on the investigation the vibrational and structural dynamics of
supercooled bulk and confined water by ultra-fast optical Kerr effect and the
results interpretation on the base of mode-coupling theory.

[1] R. Torre, Time-resolved spectroscopy of complex liquids, Springer,
New York, (2008).
[2] R. Torre, P. Bartolini, R. Righini, Nature, 428, 296 (2004); A. Taschin, P.
Bartolini, R. Eramo, and R. Torre, Phys. Rev. E, 74, 031502 (2006).
[3] R. Cucini, A. Taschin, P. Bartolini, and R. Torre, J. Mech. Phys. Solids, 58,
1302 (2010); A. Taschin, R. Cucini, P. Bartolini, and R. Torre, Europhys. Lett.,
92, 26005 (2010).
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Quantum effects in water

Anita Zeidler,1 Philip S. Salmon,2 Henry E. Fischer,3 Jörg C.
Neuefeind,4 J. Mike Simonson,5 Hartmut Lemmel,3, 6 Helmut
Rauch,3, 6 and Thomas E. Markland7

1Physics Department, University of Bath, BA2 7AY, Bath,
UK
2Department of Physics, University of Bath, Bath BA2 7AY,
UK
3Institut Laue-Langevin, BP 156, F-38042, Grenoble Cx 9,
France
4Spallation Neutron Source, Oak Ridge National Laboratory,
P.O. Box 2008, MS 6474, Oak Ridge, TN 37831, USA
5Center for Nanophase Materials Science, Oak Ridge National
Laboratory, P.O. Box 2008, MS 6493, Oak Ridge, TN 37831,
USA
6Vienna University of Technology, Atominstitut, Stadionallee 2,
1020 Wien, terreich
7Department of Chemistry, Columbia University, 3000 Broadway,
New York 10027, USA

Despite the multitude of experimental and theoretical methods applied to wa-
ter many details of its structure are still poorly understood. Here we introduce
the method of oxygen isotope substitution in neutron diffraction as a structural
probe of disordered materials. This technique is employed to measure the struc-
ture of light and heavy water, thus circumventing the assumption of isomor-
phism between H and D as used in more traditional neutron diffraction meth-
ods. The intra-molecular and inter-molecular O-H and O-D pair correlations
are found to be in excellent agreement with path integral molecular dynamics
simulations, both techniques showing a difference of 0.5 between the O-H and
O-D intra-molecular bond distances and essentially no change in the average
hydrogen bond length. The results demonstrate both the effectiveness of our
approach and the validity of a competing quantum effects model for water in
which its structural and dynamical properties are governed by an offset between
intra-molecular and inter-molecular quantum contributions.
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Biaxial nematic LCs: can polydispersity stabilize
them?

Simone Belli,1 Alessandro Patti,2 Marjolein Dijkstra,3 and René
van Roij1
1Institute for Theoretical Physics - Utrecht University, Leuvenlaan 4,
3584CE, Utrecht, The Netherlands
2Instituto de Quı́mica Avanzada de Catalunya
3Debye Institute for Nanomaterials Science - Utrecht University,
Princetonplein 1, 3584 CC, Utrecht, The Netherlands

Since its first prediction in the early 70s, the biaxial nematic phase has been
considered the “Holy Grail” of liquid-crystal science. The reason for this relies
in its higher orientational order with respect to the usual uniaxial nematic,
which determines a potential higher efficiency in technological applications.
Unfortunately, the development of such applications has been so far forbid-
den by the very little stability of this liquid crystal phase. In fact, its first
experimental observation dates back to just few years ago.In lyotropic liquid
crystals, a stable biaxial nematic phase was recently observed in a colloidal
suspension of goethite particles with brick-like shape [1]. However, the
relative stability of this phase was surprisingly wide, thus contradicting every
theoretical prediction. We claim that the reason of this disagreement lies on
the oversimplified theoretical assumption that particles have all exactly same
size and dimensions.This unexpected result motivates our interest in studying
the effect of polydispersity on the stability of the biaxial nematic phase. By
using a density functional theory approach at second virial order (Onsager
theory) with discretized orientations (Zwanzig model), we analyze the phase
diagram of a mixture of brick-like particles. Surprisingly enough, we show that
when polydispersity is high enough “rod-like” bricks behave like “plate-like”.
Moreover, a crossover region between these two regimes exists, when the
stability of the biaxial nematic is considerably increased at expenses of the
uniaxial. We claim that this effect plays an important role in order to interpret
the experimental results. Moreover, in a wider perspective this work offers
an important example of using polydispersity to control the phase behavior of
colloids.

[1] E. Van den Pol et al., Phys. Rev. Lett. 103, 258301 (2009)
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Self-assembly of DNA duplexes into polymers
chains: theory, simulations and experiments

Cristiano De Michele,1 Tommaso Belllini,2 and Francesco

Sciortino1

1Dipartimento di Fisica, ”Sapienza” Università di Roma, Piazzale Aldo
Moro N.2, I-00185, Rome, Italy
2Dipartimento Di Chimica, Università degli Studi di Milano, Milano,
Italy

End-to-end stacking of short DNA duplexes (monomers) formed by com-
plementary B-form DNA oligomers, 6 to 20 base pairs in length, by virtue
of hydrophobic interactions gives rise to nematic and liquid crystal phases
[1]. Duplex oligomers aggregate into poly-disperse polymers chains with a
significant persistence length. Experiments show that liquid crystals phases
form above a critical volume fraction, which depends on the number of basis
composing the duplex. We introduce and investigate, theoretically and via
numerical simulations, a coarse-grained model of DNA duplexes [2]. Each
monomer is represented as a hard quasi-cylinder whose bases are decorated
with two identical reactive sites, which may interact with any other reactive site
in the system via a short-range attractive interaction, modeled by a square-well
potential. We propose a free energy functional which successfully provides
a quantitative description of the phase diagram, i.e. of the location of the
isotropic and nematic phases, as well as a description of the system structure,
e.g. the polymer length distributions. We also compare with previous studies of
equilibrium polymerization in dense systems [3-6]. Finally, the comparison of
the numerical and theoretical results with the experimental findings concerning
the isotropic-nematic phase boundaries allows us to give an estimate of the
stacking energy.

[1] M. Nakata et al., Science 318, 1276 (2007).
[2] C. De Michele, T. Bellini and F. Sciortino, in preparation.
[3] P. van der Shoot and M. E. Cates, Europhys. Lett. 25, 515 (1994).
[4] P. van der Shoot and M. E. Cates, Langmuir 10, 670 (1994).
[5] X. Lu and J. T. Kindt, J. Chem. Phys. 120, 10328 (2004).
[6] T. Kuriabova, M. D. Betterton and M. A. Glaser, J. Mater. Chem. 20, 10366
(2010).
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Frustrated nematic order in spherical geometries

Alberto Fernandez-Nieves,1 Teresa Lopez-Leon,1 Vinzenz
Koning,2 Sharan Devaiah,3 Ekapop Pairam,3 and Vincenzo
Vitelli2
1Georgia Institute of Technology, School of Physics, 837 State Street
NW, 30332, Atlanta, USA
2Leiden University, Leiden, The Netherlands
3Georgia Institute of Technology, Atlanta, USA

When an ordered material lives in a curved space, topological defects are often
required, even in the ground state. The north and south poles in the Earth’s
globe and the pentagonal units in the soccer ball provide familiar realizations of
this fact. When the order is nematic and the space is a spherical shell, a variety
of defect structures all comply with the topological constraints imposed by
the sphere. However, the arrangement of the defects depends on the geometry
and in particular on the shell thickness inhomogeneity. We will present recent
experimental results on these questions and elastic energy calculations to
rationalize them [1]. In addition, we will also present our recent progress on
generating [2] and stabilizing [3] non-zero genus surfaces, which we plan on
using as templates to address the interplay between order and topology.

[1] T. Lopez-Leon, V. Koning, S. Devaiah, V. Vitelli, A. Fernandez-Nieves,
Frustrated nematic order in spherical geometries, Nature Physics (accepted).
[2] E. Pairam, A. Fernandez-Nieves, Generation and Stability of Toroidal
Droplets in a Viscous Liquid, Phys. Rev. Lett. 102, 234501 (2009).
[3] E. Pairam, A. Fernandez-Nieves, Preventing the break-up of toroidal and
higher-genus drops (in preparation).
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Monodisperse silica bullets: a new model system
that enables the real-space study of rod-like
colloids

Arnout Imhof,1 Anke Kuijk,1 and Alfons van Blaaderen1

1Utrecht University, Princetonplein 5, 3584CC, Utrecht, The
Netherlands

Rod-like systems are known for their liquid crystal phases, but existing
rod-like colloidal model systems do not allow in situ observation of single
particles. Therefore, experimental studies of liquid crystal phases have been
mainly on the many-particle level, using properties such as birefringence. We
developed a new rod-like colloidal model system, consisting of silica bullets
that are tuneable in length and aspect ratio, which does allow for real-space
3D observation on the single particle level in highly concentrated dispersions
[1]. The anisotropic particles form at the interface of water droplets in a higher
alcohol. Using confocal microscopy, we studied the phase behaviour of the rods
in gravity and external electric fields, resulting in the observation of isotropic,
(para-) nematic and smectic liquid crystal phases quantitatively on the single
particle level.

[1] Journal of the American Chemical Society 133, 2346 (2011).
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Molecular manipulator driven by spatial variation
of liquid crystalline order

Jun Yamamoto,1 Sadaki Samitsu,1 and Yoichi Takanishi1
1Department of Physics, Graduate School of Science, Kyoto University,
Kitashirakawa, Sakyo, 6068502, Kyoto, Japan

Previous studies on liquid crystal systems containing impurities such as
colloidal particles have focused on the collective long-range interactions among
micron-scale impurities, resulting from elastic distortion of the liquid crystalline
order. When the impurity size decreases substantially, the coupling between
the scalar nematic order parameter S and the polymer concentration f becomes
relevant instead of the elastic interaction mechanism. The coupling between
S and f originates from local molecular interaction, but becomes long-ranged
because the total polymer concentration is conserved over the whole sample.
Here, we propose a novel mechanism in which the spatial variation of S
generates a ‘force’ that transports nano-scale polymeric impurities mediated by
the coupling between S and f. We have successfully designed a prototype of a
molecular manipulator that transports molecules along spatial variations of the
scalar order parameter, modulated in a controlled manner by spot illumination
of an azobenzene-doped nematic phase by UV light. We also demonstrate
the use of the manipulator for the measurement of the anisotropic diffusion
constant of a polymer in a nematic phase. The manipulator can control the
spatial variation of the polymer concentration; therefore it shows promise
for use in the design of novel hybrid soft materials. However, since the low
molecular weight azo dye can freely walk out from the illuminated area by UV
light, then the edge of the low order parameter region become diffuse. Recently,
we have drastically improved the resolution of the manipulator up to several
micron by the polymerization of the azo dye molecules. Thus, we got elemental
tools to make a regular arrangement of the functional macro-molecules or
nano-particles in the liquid crystals.

[1] S. Samitsu, Y. Takanishi and J. Yamamoto, Nature Materials, 9, 816-
820 (2010).
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Exploring the ”nucleation” of amyloid fibrils with
experiments and computer simulations

Rosalind Allen,1 Ryan Morris,1 Kym Eden-Jones,1 Line
Jourdain,1 and Cait MacPhee1

1SUPA, School of Physics and Astronomy, University of Edinburgh,
Mayfield Road, EH9 3JZ, Edinburgh, United Kingdom

Amyloid fibrils are ordered aggregates of misfolded protein. These fibrils
are of great interest because of their role in degenerative diseases including
Alzheimer’s and Type-2 diabetes. Their physical properties also make them po-
tentially useful in the development of novel materials. It is well known that fibril
formation occurs with ”nucleation-like” kinetics in which a long lag phase is fol-
lowed the rapid appearance of fibrils. However, despite much work, the molec-
ular mechanisms responsible for fibril formation and growth remain unclear.
This is particularly important because it is believed that pre-fibril oligomeric
species present during the lag time may be the cytotoxic agents responsible for
amyloid associated pathologies. Much recent debate has focussed on whether
fibril formation is a stochastic nucleation process and the possible role of sec-
ondary processes such as fibril fragmentation. We have used a combination of
high throughput experiments and computer simulations to investigate in detail
the kinetics of fibril formation in bovin insulin. Our experiments reveal different
kinetic behaviour in the regimes of high and low protein concentration, as well
as stochasticity in the fibril growth rates. Using a series of computer simulation
models with different early stage fibril formation mechanisms, we show that this
behaviour is not fully explained by any of the current models, but may point to
the presence of multiple competing or sequential assembly processes during the
lag and growth phases of fibril formation.
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Nanoscale buckling instability of layered
copolymers

Jean-Louis Barrat

Université Grenoble 1, LiPHY, 140 rue de la physique, 38401,
Saint Martin d’Heres, France

In layered materials, a common mode of deformation involves buckling of the
layers under tensile deformation. This undulation of the layers under deforma-
tion is well known in smectic crystals, where it arises from the need to keep a
constant period of the lamellae. Another mechanism, which is thought to oper-
ate in elastic materials from geological to nanometer scales, involves the elastic
contrast between different layers. If the material is made of a regular stacking
of ”hard” and ”soft” layers, the tensile deformation is first accommodated by a
large deformation of the soft layers. The Poisson effect implies that compres-
sive stress develops in the direction transverse to the tensile deformation axis.
The ”hard” layers sustain this transverse compression until buckling takes place
and results in an undulated structure. In general, elasticity predicts buckling to
take place on the largest wavelength compatible with the boundary conditions
imposed to the system. We study this generic scenario by means of molecu-
lar dynamics simulations, for a material made of triblock copolymers in their
lamellar phase. The contrast in elasticity is provided by a different glass transi-
tion temperature of the different blocks. The buckling deformation is observed
to take place at the nanoscale, at a wavelength that depends on sample size and
strain rate. In contrast to what is commonly assumed, the wavelength of the
undulation is not determined by pre-existing defect in the microstructure of the
material. Rather, it results from kinetic effects, with a competition between the
rate of strain and the growth rate of the buckling instability. We propose a simple
model for understanding this competition.
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Measurement of force generated by the growth of
actin filaments

Damien Démoulin,1 Coraline Brangbour,1 Olivia du Roure,2

Emmanuelle Helfer,3 Marc Fermigier,2 Marie-France Carlier,3

Jérôme Bibette,1 and Jean Baudry1

1LCMD - ESPCI ParisTech, 10 rue Vauquelin, 75005, Paris,
France
2PMMH - ESPCI ParisTech, Paris, France
3LEBS - UPR 3082 CNRS, Gif-sur-Yvette, France

The actin cytoskeleton is a complex network of proteic filaments directly
involved in cellular motility: in a moving cell, the plasma membrane is pushed
forward by the formation of actin filaments polymerizing against it. We study
this phenomenon with an original experimental set-up based on superparam-
agnetic colloids that self-assemble into chains when an external magnetic field
is applied. Under field, colloids with actin filaments anchored on their surface
are pushed apart by the filaments growing in the interspace between them. The
observation of this dynamic process allowed us to measure for the first time the
force versus velocity transduction profile of a small number of actin filaments
[1]. In our model system, the number and the organization of the filaments can
be precisely controlled, reproducing different biologically relevant situations.
We show how these changes in geometry and structure alter the filaments’
response to the applied load and discuss this response in the light of theoretical
models for force generation by actin polymerization.

[1] C. Branbour, O. du Roure, E. Helfer, D. Demoulin, et al. PLoS Biol
9(4), 2011
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Anomalous diffusion of a polymer chain in an
unentangled melt

Jean Farago,1 Hendrik Meyer,2 and Alexander Semenov2

1Université de Strasbourg, Institut Charles
Sadron - 23 rue du Loess, BP 84047, 67034, Strasbourg cedex 2,
France
2CNRS, Strasbourg cedex 2, France

Contrary to common belief, the hydrodynamic interactions (HI) in polymer
melts are not screened beyond the monomer length and are important in tran-
sient regimes. We show that the viscoelastic HI effects (VHI) lead to anoma-
lous dynamics of a tagged chain in an unentangled melt at t < tN (tN , the
Rouse time). The chain centre-of-mass (CM) mean-square displacement is en-
hanced (as compared to the Rouse diffusion) by a large factor increasing with
chain length. We develop an analytical theory of VHI-controlled chain dynam-
ics yielding negative CM velocity autocorrelation function which quantitatively
agrees with our MD simulations without any fitting parameter. It is also shown
that the Langevin friction force, when added in the model, strongly affects the
short-t CM dynamics which, however, can remain strongly enhanced. The tran-
sient VHI effects thus provide the dominant contribution to the subdiffusive CM
motion universally observed in simulations and experiments on polymer melts.
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Simulation of electrokinetic phenomena with
discrete ions and beyond

Christian Holm,1 Stefan Kesselheim,1 Marcello Sega,1 and
Owen Hickey2

1Institut für Computerphysik, Universität Stuttgart, Pfaffenwaldring 27,
70569, Stuttgart, Germany
2University of Ottawa, Ottawa, Canada

Electrokinetic phenomena are very interesting since their range of applications
is broad, ranging from polyelectrolye and colloidal electrophoresis over to
microfluidic devices like pumps up to DNA translocation through nanopores.
Over the last years a plethora of mesoscopic methods have been developed to
simulate electrokinetic effects. We present recent progress in the development
of discrete ion based simulation methods that extend mesoscopic fluid dy-
namics methods such as the Lattice Boltzmann Method or Dissipative Particle
Dynamics. This allows to take into account ion correlations in vicinity of highly
charged interfaces beyond the electrokinetic equations and thus allows to study
phenomena beyond the standard model of electrokinetics. In particular we
present a method that allows to take dielectric boundary forces into account[1].
As an application of this method we will discuss the translocation process of
a simple polyelectrolyte through a synthetic nanopore [2]. When the Debye
length is small with respect to other length scales of the system the electrostatic
interaction can be treated implicitly which allows a very efficient calculation of
complex phenomena. We present a Lattice-Boltzmann-based implicit treatment
that allows to simulate complex effects beyond the capabilities of explicit-ion
methods. As an example we present the unusual motion of overall charged
neutral object in an electric field[3]. This method allows to study various fancy
electrokinetic effects predicted long time ago [4].

[1] S. Tyagi, M. Süzen, M. Sega, M. Barbosa, S. Kantorovich, C. Holm,
Journal of Chemical Physics 132, 154112 (2010).
[2] S. Kesselheim, M. Sega, C. Holm, Comp. Phys. Comm. 182, 33-35 (2011).
[3] O.A. Hickey, C.Holm, J.L. Harden, GW. Slater, Phys. Rev. Lett. 105,
148301 (2010).
[4] D. Long and A. Ajdari, Phys. Rev. Lett. 81, 1529 (1998).
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Dendrimer cluster crystals

Dominic Lenz,1 Christos Likos,2 and Ronald Blaak2

1Institut für Theoretische Physik II, Heinrich-Heine-Universität
Düsseldorf, Universitätsstraße 1, D-40217, Düsseldorf, Germany
2Faculty of Physics, University of Vienna, Vienna, Austria

We study systems of amphiphilic dendrimers of second generation with
regards to their predicted capability [1-3] of building stable cluster crystals, by
employing monomer-resolved Monte Carlo simulations. By varying parameters
according to the predictions made in an coarse-grained level description [1],
we artificially create several cluster crystal systems in the computer. Although
the predictions are based on the zero-density limit effective pair-interaction, we
discover that at sufficiently high densities (and corresponding cluster occupa-
tion numbers), cluster crystals remain stable. To put the validity of this result
under scrutiny, we further investigate the behavior of the stable systems under
several conditions, such as crystal and cluster occupation defects or variations
of the pressure. Since spontaneous cluster hopping behavior is too slow to be
observed within simulation times, [4] we further investigate the response of the
system under forced hopping (i.e., pulling) of single dendrimers through the
crystal. In addition we examine the melting behavior of both the whole crystal
systems and single clusters as they occur in the crystal under several conditions,
as well as the structure and cluster distribution of the associate cluster-forming
liquids at lower dendrimer concentrations [5].

[1] C. N. Likos, B. M. Mladek, D. Gottwald, and G. Kahl, J. Chem.
Phys. 126, 224502 (2007).
[2] B. M. Mladek, D. Gottwald, G. Kahl, M. Neumann, and C. N. Likos, Phys.
Rev. Lett. 96, 045701 (2006).
[3] B. M. Mladek, G. Kahl, and C. N. Likos, Phys. Rev. Lett. 100, 028301
(2008).
[4] A. J. Moreno and C. N. Likos, Phys. Rev. Lett. 99, 107801 (2007).
[5] D. A. Lenz, B. M. Mladek, C. N. Likos, G. Kahl, and R. Blaak, J. Phys.
Chem. B. (2011).
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Surface-functionalised nanoparticles: Statics and
dynamical properties

Federica Lo Verso,1 Leonid Yelash,1 Sergei A. Egorov,2 and
Kurt Binder1

1Institut of Physics JGU Mainz, Staudingerweg 7, 55099, Mainz,
Germany
2Department of Chemistry, University of Virginia, Charlottesville,
Virgin Island U.S

Nanoparticles functionalized by polymers have found biomedical and therapeu-
tic applications. The functionalization by polymers has been used to alter the
physicochemical properties of the particular nanoparticle. In the case of viral
vectors, e.g., polymer functionalization tunes the biocompatibility, suppressing
the binding of antibodies and conferring the nanoparticle with stealth properties.
By contrast, the inorganic nanoparticles comprise materials in a form that is not
normally encountered in the human body, and polymer functionalization is nec-
essary to ensure biocompatibility. By means of molecular dynamic simulations
and density functional theory we try to clarify some of the mechanism driving
specific properties, shape and response to the environment of these polymeric
materials. The main purpose of the present work is to give a detailed quantita-
tive description of the spherical brush behavior when the radius of gyration of
the corona is comparable with the size of the core. A coarse-grained bead-spring
model is used to describe the macromolecules, and purely repulsive monomer-
monomer interactions are taken throughout, restricting the study to the good
solvent limit. The structural characteristics are discussed (density profiles, av-
erage end-to-end distance of the grafted chains, etc.) and the potential of mean
force between the particles as function of their distance is computed, varying
both the radius of the spherical particles and their distance, as well as grafting
density and chain length of the end-grafted flexible polymer chains. When the
nanoparticles approach very closely, some chains need to be squeezed out into
the tangent plane in between the particles, causing a very steep rise of the re-
pulsive interaction energy. Finally we analysed in detail the monomer/polymer
dynamics for several values of the surface density and length of the chains. The
limit of applicability of the different models and approaches is also discussed.

4. Polymers, polyelectrolytes, biopolymers



O4.8
LH 28
Thu 8
10:30

Dendronized polymers investigated by neutron
scattering

Reinhard Sigel,1 Baozhong Zhang,2 Sebastian Lages,1

Yen-Cheng Li,1 Afang Zhang,2 Dieter Schlüter,2 and Peter
Schurtenberger3

1University Fribourg, Adolphe Merkle Institute, Chemin du Musee 3,
CH-1700, Fribourg, Switzerland
2ETH Zürich, Zürich, Switzerland
3Lund University, Lund, Sweden

A dendrimer is built up by regularly arranged chemical branching units, which
form a fractal object. Attached as side groups to a polymer chain, the den-
drimers affect the chain stiffness and cross section. Based on neutron scattering
investigations, we quantified these changes for dendronized polymers of gener-
ation 1 to 5. We also investigated the conformational changes that occur upon
charging the side groups and transferring the polymers to aqueous solvents with
different ionic strength.
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Counter ion distribution and polyelectrolyte
structure in dilute solutions seen by anomalous
small angle scattering

Ralf Stehle,1 Günter Görigk,1 and Matthias Ballauff1
1Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1, 14109, Berlin,
Germany

Polyelectrolytes are common structures in nature. But the distribution and cor-
relation of counterions around polyelectrolytes is still a challenging problem.
In solution only parts of the counterions are dissociated. Due to electrostatic
interactions parts of the counterions are condensated to the polymer chain [1].
Anomalous small angle scattering is a feasible method to seperate the resonant
signal of appropriate counterions from the nonresonant contributions of the
polyion [2]. Rod like polyelectrolytes were investigated sucessfully by this
method [3]. Polyacrylic acid is a flexible polyion, widely used for different
applications. The Rb

+ counterion distribution around polyacrylic acid with two
different narrowly distributed chain lengths is analysed. From the quantitative
analysis of the resonant invariant, Rb

+ concentrations were calculated.

[1] G. S. Manning, J. Chem. Phys. 51, 954 (1969).
[2] M. Ballauff, A. Jusufi, Colloid. Polym. Sci. 279, 829 (2001).
[3] B. Guilleaume, J. Blaul, M. Ballauff, M. Wittemann, M. Rehahn, G. Görigk,
Eur. Phys. J. E 8, 299 (2002).
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Compression, crumpling and collapse of spherical
shells and capsules

Gerrit Vliegenthart1 and Gerhard Gompper1

1Forschungszentrum Juelich, Leo Brandtstrasse 11, 52425, Juelich,
Germany

The deformation of thin spherical shells by applying an external pressure or by
reducing the volume is studied by computer simulations and scaling arguments.
The shape of the deformed shells depends on the deformation rate, the reduced
volume V/V0 and on the Föppl-von-Kármán number γ. For slow deformations
the shell attains its ground state, a shell with a single indentation, whereas for
large deformation rates the shell appears crumpled with many indentations. The
rim of the single indentation undergoes a shape transition from smooth to polyg-
onal that depends on the indentation depth and the Föppl-von-Kármán number.

For the smooth rim the elastic energy scales like γ1/4 whereas for the polygonal
indentation we find a much smaller exponent, even smaller than the 1/6 that is
predicted for stretching ridges. The relaxation of a shell with multiple inden-
tations towards the ground state follows and Ostwald ripening type of pathway
and depends on the compression rate as well as on the Föppl-von-Kármán num-
ber.
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Theory and simulations of designable modular
self-assembling materials

Ivan Coluzza1 and Christoph Dellago1

1University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria

We present a novel theoretical framework to design new experimentally
realizable materials with tunable self-assembling properties. Our designable
self-assembling system is based on a small set of realistic modular sub-units,
which, thanks to the wide range of options offered by state of the art nano-
particle manipulation, allow for a direct translation of the theoretical predictions
to experiments. Our results point towards the identification of an optimal set of
modular sub-units, and introduce a general design procedure [1] necessary to
choose a sequence of units that, once bonded into a chain,will spontaneously
collapse to a specific target structure. Subsequently, the collapsed chains will
themselves self-assemble into complex super structures, again controlled by
the same sequence selection criterion. We show how patchy colloidal particles
are an optimal choice for the sub-units, as they have proven to posses a rich set
of self-assembling properties [2, 3] and allow real space tracking by means of
confocal microscopy.

[1] I. Coluzza, PLoS One.(6):e20853 (2011)
[2] E. Zaccarelli, Journal of Physics: Condensed Matter (19):323101 (2007).
[3] E. Bianchi, R. Blaak and C N. Likos, PCCP (10.1039/c0cp02296a):19614
(2011)
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Phase behavior and effective shape of
semi-flexible colloidal rods and biopolymers

Matthew Dennison,1 Marjolein Dijkstra,1 and Rene van Roij2
1Debye Institute, Utrecht University, Debye Institute, Utrecht University,
PO Box 80000, 3508TA, Utrecht, The Netherlands
2Institute for Theoretical Physics, Utrecht University, Princetonplein 1,
3584 CC, Utrecht, The Netherlands

The fd-virus is a semi-flexible virus particle that is often used as an experimen-
tal model of colloidal rods. A recent study of thick-thin fd-virus mixtures [1]
has shown a diverse range of phase behaviour, with isotropic-nematic, nematic-
nematic, and isotropic-nematic-nematic phase coexistence regions found. Due
to the fd-virus’ long, thin shape and low polydispersity, one would expect
the phase diagrams to match those predicted by Onsager theory. However,
standard Onsager theory of binary mixtures gives surprisingly poor agreement
with experiments [2]. We present a generalized model to describe binary
mixtures of semi-flexible rod-like colloids, calculating full phase diagrams for
fd-virus mixtures of a range of diameter ratios. By incorporating flexibility we
find quantitative and qualitative agreement with experimental results [3]. We
explore the effects of particle stiffness on the phase diagram, and show how that
the observed phase behaviour becomes richer upon increasing the flexibility of
the particles. Our model can also be used to calculate the state-point dependent
effective shape of the rods, which we find to vary widely throughout the phase
diagrams.We apply our model also to single semi-flexible polymers dissolved
in an fd-virus solution, which experimentally have been shown to stretch out
over the isotropic-nematic transition of the fd-virus [4]. Our model shows that
sufficiently stiff polymers will stretch out, and that the effect may be tuned by
varying the stiffness of the background solution.

[1] K. R. Purdy, S. Varga, A. Galindo, G. Jackson, and S. Fraden, Phys.
Rev. Lett.94, 057801 (2005).
[2] R. van Roij, B. Mulder, and M. Dijkstra, Physica A 261, 374 (1998).
[3] M. Dennison, M. Dijkstra and R. van Roij, accepted for publication in Phys.
Rev. Lett.
[4] Z. Dogic et al., Phys. Rev. Lett. 92, 125503 (2004).
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Self-assembly of magnetic colloids
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Christos Likos,6 and Daan Frenkel1
1University of Cambridge, Lensfield Road, CB21EW, Cambridge,
United Kingdom
2LMU Munich, Munich, Germany
3University of Ljubljana, Ljubljana, Slovenia
4Jozef Stefan Institute, Ljubljana, Slovenia
5FZ Julich, Jülich, Germany
6University of Vienna, Vienna, Austria
7TU Vienna, Vienna, Austria

Large fraction of colloidal science is recently focused on self-assembly of novel
structures. The shape of the particles, their interactions and the kinetics are the
main factors determining the types of structures we can observe. Paramagnetic
colloids driven by external magnetic fields are easily tunable and feature an
extremely rich variety of behavior. Therefore, such systems can provide a
valuable insight into the self-assembly process. Here we report experiments
that probe assembly of superparamagnetic micrometer size spherical colloids in
precessing external fields. In a magic-angle geometry the external fields induce
an isotropic attraction between two isolated colloids in bulk, similar to the van
der Waals force between atoms. However, the strong many-body polarization
interactions among them steer an ordered aggregation pathway consisting of
growth of chains, cross-linking, network formation, and consolidation of one
colloid thick membranes. We theoretically explain the membrane stability,
their elastic and self-healing properties and the observed aggregation pathway.
Geometrical confinement provides an additional control over the self-assembly
process. We investigate the 2D systems with induced interactions ranging from
purely repulsive to purely attractive. We observe curious arrested networks
and analyze the kinetics of their formation by first constructing effective pair
interactions. We also study the transition from 2D towards 3D in the case of
soft repulsive interactions. Finally, we discuss possible applications of our
results to the nano and atomic length scales.

[1] PRL 103 228301 (2009)
[2] J. Phys.: Condens. Matter 20 494220 (2008)
[3] PRL 99 248301 (2007)
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Ordered equilibrium structures of patchy particles

Guenther Doppelbauer,1 Eva Noya,2 Emanuela Bianchi,1 and

Gerhard Kahl1
1TU Wien, Wiedner Hauptstrasse 8-10/136, 1040, Wien, Austria
2Instituto de Quı́mica Fı́sica Rocasolano, Madrid, Spain

We have investigated the self-assembly scenarios of spherical colloidal particles
decorated by four attractive patches of finite extension [1,2]. The positions of
the patches on the colloidal surface form the tips of a pyramid, whose lateral
extension can be triggered by a geometrical parameter g. Varying g and the
external pressure, we identify ordered equilibrium structures that the system is
able to form. This is achieved by minimizing the Gibbs free energy at T = 0 by
an optimization tool based on ideas of genetic algorithms [3]. This optimization
strategy copes very well with the large parameter space (defined by the unit
cell parameters as well as particle positions and orientations within the unit
cell) and the rugged energy landscape. The variety of ordered structures turns
out to be very rich. It is governed by a competition between patch saturation
(minimizing energy) and packing (minimizing volume): at low pressure values
we find rather open structures, realized via staggered honey-comb lattices,
bcc-type, or layered structures, all of them being characterized by a high degree
of saturated bonds between the patches; at high pressure, on the other hand
fcc- and hcp-like, close-packed structures dominate, leaving many patches
unsaturated. For a particular patch decoration, which is more elongated than
a the tetragonal arrangement, a relatively open bcc-type structure is able to
survive until particularly high pressure values. Via Monte Carlo simulations
and thermodynamic integration we obtain results for the Gibbs free energy
at finite temperature to calculate phase diagrams, including both ordered and
disordered phases [4].

[1] J. P. K. Doye et. al, Phys. Chem. Chem. Phys. 9, 2197 (2007).
[2] E. Bianchi et. al, Phys. Chem. Chem. Phys. 13, 6397 (2011).
[3] G. Doppelbauer et. al, J. Phys.: Condens. Matter 22, 104105 (2010).
[4] E. G. Noya et. al, J. Chem. Phys. 132, 234511 (2010).
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Self-assembly of a colloidal interstitial solid
solution with tunable sublattice doping

Laura Filion,1 Michiel Hermes,2 Ran Ni,2 Esther Vermolen,3

Anke Kuijk,2 Christina Christova,4 Stiefelhagen Johan,2 Teun
Vissers,2 Alfons van Blaaderen,2 and Marjolein Dijkstra2

1University of Cambridge, Lensfield Road, CB2 1EW, Cambridge,
United Kingdom
2Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The
Netherlands
3Shell Projects and Technology, Rijswijk, The Netherlands
4PTG/e BV, Eindhoven, The Netherlands

Hard sphere mixtures are arguably one of the simplest systems for modelling
and explaining the phase behaviour in colloidal, nanoparticle, and atomic sys-
tems. Comparisons between theory, simulations, and experimentally realized
hard sphere mixtures have provided a wealth of information regarding e.g. nu-
cleation processes, entropy driven crystal formation, and the glass transition. In
this work we present a novel phase appearing in colloidal hard sphere mixtures,
namely, an interstitial solid solution (ISS). We demonstrate theoretically and ex-
perimentally the self assembly of a purely entropic ISS in a binary hard sphere
mixture of size ratio 0.3. The ISS phase is constructed by filling the octahedral
holes of an FCC crystal of large particles with small particles. We find that the
fraction of octahedral holes filled with a small particle can be completely tuned
from 0 to 1. Interestingly, this ISS was likely seen but misidentified in previous
theoretical and experimental work. We also study the hopping of the small par-
ticles between neighboring octahedral holes, and surprisingly, we find that the
diffusion increases upon increasing the density of small spheres. The existence
of an ISS in such a simple model system demonstrates the possibility of ISSs in
many other colloidal and nanoparticle systems.
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Self-controlled confinement of nanoparticles in the
web of grain boundaries of a colloidal polycrystal
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France

Composites materials comprising nanoparticles dispersed in a matrix are of
great scientific and technological interest, since nanoparticles can enhance dra-
matically the matrix properties or even impart new functionalities, and because
the matrix can act as a template that structures the particles at the nanoscopic
level. However, controlling the three-dimensional spatial distribution of
nanoparticles in a molecular or macromolecular matrix is a challenging task,
as particle segregation usually depends crucially on the surface chemistry of
the particles. Here, we present a model hybrid material, obtained by dispersing
nanoparticles in a colloidal crystalline matrix, composed of thermoresponsive
micelles. Using confocal microscopy, we show that the nanoparticles segregate
in a network of thin sheets, in analogy to impurities confined in the grain
boundaries of atomic polycrystals. We demonstrate that the size of the colloidal
crystallites is tuned by varying independently the nanoparticle concentration
(regardless of their composition and surface chemistry) and the crystallization
rate, because they both determine the number of critical nuclei during the
nucleation process and we quantify our findings using classical nucleation
theory. Remarkably, we find that the efficiency of the segregation of the
nanoparticles in the grain-boundaries is dictated solely by the typical size of
the crystalline grains, due to the fact that the larger a grain can grow, the higher
the concentration of the impurities progressively expelled from the crystallites
during their growth and eventually trapped in the grain boundary, as we clearly
show. Our method provides a general approach for confining nanoparticles
in absence of any external field and in a controlled and tunable fashion in a
three-dimensional soft colloidal matrix.
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Onset of mechanical stability in random sphere
packings

Matthew Jenkins,1 Mark Haw,2 Wilson Poon,3 and Stefan
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3The University of Edinburgh, Edinburgh, United Kingdom

Particulate systems are widespread in nature and industry, and display com-
plex packing properties. Their load-bearing properties, especially how they re-
spond to gravity, are poorly understood. In systems as diverse as sand piles
and cornflakes, the density of a random particulate pile under gravity depends
sensitively on preparation (pouring, shaking, tapping. . . ), but experimentally
always falls within a limited range between the so-called random loose- and
random close-packed states (denoted RLP and RCP). This behaviour can be
reproduced by model sphere systems, which have stable packing fractions
ΦRLP ≃ 0.55 ≤ Φ ≤ ΦRCP ≃ 0.64. The microscopic explanation as to
why random sphere packings first become stable at such repeatable packing
fractions is of fundamental interest. We study the stability of individual parti-
cles in real experimental three-dimensional packings, and show that in a large
number of experimental random sphere packings larger than but encompass-
ing the range ΦRLP –ΦRCP , a system-spanning stable ‘backbone’ emerges at a
well-defined packing fraction. At this point, individually mechanically stable
particles become sufficiently connected to form a globally stable pile. We show
that this state is ‘overstabilised’, in keeping with recent theoretical and simu-
lation results. Using our results for experimental colloidal and granular sphere
packings, as well as for simulated spheres, we highlight general aspects of the
load-bearing behaviour of random sphere packings.
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Particle configurations and gelation in capillary
suspensions

Erin Koos1 and Norbert Willenbacher1
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Karslruhe, Germany

When a small amount (less than 1 of a second immiscible liquid is added to the
continuous phase of a suspension, the rheological properties of the admixture
are dramatically altered and can change from a fluid-like to a gel-like state.
This transition is attributed to the capillary forces of the two fluids on the
solid particles and two distinct states are defined: the ‘pendular state’ where
the secondary fluid preferentially wets the particles and the ‘capillary state’
where the secondary fluid wets the particles less well [1]. This current research
investigates the capillary state suspensions in more detail using a computational
model to evaluate the lowest energy states of small particle number clusters.
These clusters are used as building blocks for the formation of sample-spanning
networks within the admixture, where the constituent structures have limited
regions of stability based on the wetting angle and volume of the secondary
fluid leading to changes in the strength of the network. The influence of the
capillary force in the formation of these networks is further substantiated using
rheological measurements. For a series of glass bead suspensions with varying
particle radii, the expected reciprocal radius scaling of yield stress is found.
These mixtures also reduce in strength with increasing temperature (trending
with interfacial tension) and are completely reversible if the secondary fluid
is removed. Capillary suspensions have numerous technical applications
including the formation of tunable, stable suspensions of lyophobic solids. The
strong network of particles may be used as a template for the manufacturing
of various porous materials, like lightweight ceramics, thermal insulators, or
catalyst carriers.

[1] Koos, E. and N. Willenbacher, Science 331, 897 (2011)
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Surface roughness directed self-assembly of
colloidal micelles

Daniela Kraft,1 Ran Ni,2 Frank Smallenburg,2 Michiel Hermes,2

Kisun Yoon,3 David Weitz,3 Alfons van Blaaderen,2 Jan
Groenewold,1 Marjolein Dijkstra,2 and Willem Kegel1
1Van ’t Hoff Laboratory for Physical and Colloid Chemistry,
Debye Institute for NanoMaterials Science, Utrecht University,
Padualaan 8, 3584 CH, Utrecht, The Netherlands
2Soft Condensed Matter Group, Debye Institute for NanoMaterials
Science, Utrecht University, Princetonplein 1, 3584 CC, Utrecht,
The Netherlands
3School of Engineering and Applied Sciences/Department of Physics,
Harvard University, Cambridge, USA

Self-assembly of colloidal particles into larger structures bears potential for
creating materials with unprecedented properties, such as full photonic band
gaps in the visible spectrum. For self-assembly uniform colloids are quite lim-
ited as building blocks since their shape is the only control parameter. Much
more promising in this respect are colloids with site-specific attractions. Here
a novel experimental realization of such “patchy” particles based on surface
roughness specific depletion attraction is reported. Colloids with one attractive
patch are experimentally shown to assemble into clusters resembling surfactant
micelles. Similarities as well as differences between the colloidal model system
and molecular surfactants are discussed and quantified by employing computa-
tional and theoretical models. The observed extremely long equilibration times
reveal a fundamental challenge for self-assembly on the colloidal scale, which
needs to be accounted for in the future.
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Crystallization in colloids and complex plasmas:
similarities and complementarities

Hartmut Löwen

University of Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf,
Germany

Colloidal dispersions and complex plasmas are ideal model systems to study
nonequilibrium phenomena on the fundamental particle-scale. These two
systems share the classical many-body character of strongly coupled systems
but differ in their dynamics which is overdamped in the colloidal and almost
ballistic in the complex plasma case. While equilibrium freezing behaviour
is therefore quite similar for colloids and complex plasmas, nonequilibrium
crystallization processes can be vastly different. Using simulations and
experiment [1,2], the role of the latent heat for crystallization is emphasized.
For colloidal dispersions, the latent heat produced upon solidification is
immediately transported away by the solvent, but it is kept locally for complex
plasmas leading to a completely different crystallization scenarios.

[1] K. R. Sutterlin, A. Wysocki, A. V. Ivlev, C. Rath, H. M. Thomas, M.
Rubin-Zuzic, W. J. Goedheer, V. E. Fortov, A. M. Lipaev, V. I. Molotkov, O. F.
Petrov, G. E. Morfill, H. Lowen, Phys. Rev. Letters 102, 085003 (2009).
[2] A. Wysocki, C. Rath, A. V. Ivlev, K. R. Sutterlin, H. M. Thomas, S.
Khrapak, S. Zhdanov, V. E. Fortov, A. M. Lipaev, V. I. Molotkov, O. F. Petrov,
H. Lowen, G. E. Morfill, Phys. Rev. Letters 105, 045001 (2010).
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Structural and dynamic properties of concentrated
suspensions of ellipsoids

Ilya Martchenko,1 Chantal Rufier,2 Jérôme J. Crassous,1 Hervé

Dietsch,1 and Peter Schurtenberger3

1Adolphe Merkle Institute, University of Fribourg, Getingevägen 60,
Box 124, SE-22100, Lund, Sweden
2INSA de Lyon, Villeurbanne, France
3Physical Chemistry, Lund University, Lund, Sweden

Despite extensive numerical simulations [1, 2], limited systematic experimental
data is currently available on the volume fraction dependence of the structural
and dynamic properties of non-spherical colloids and the onset of dynamical
arrest. This is partly due to the difficulties of finding appropriate model systems.
We have probed the morphology, dynamics and structural ordering of nearly
monodisperse ellipsoidal nanoparticles, with an average aspect ratio of 2.7 by
a combination of scattering and microscopy techniques in an extended range
of volume fractions, Φ. The particles are obtained by growing a uniform silica
layer on a spindle-type hematite core [3], and then fully removing the core. This
yields silica capsules of moderate negative buoyancy and reduced turbidity,
retaining the shape of the initial core-shell system. At low volume fractions, the
dynamics (translational and rotational diffusion) as measured by dynamic and
depolarized dynamic light scattering was found to be reproduced quantitatively
by the theoretical predictions for ellipsoids with linear dimensions given those
determined from TEM [4]. The evolution of the structure factor S(q) with
increasing volume fractions was determined using small-angle X-ray scattering,
where volume fractions were determined independently through a combination
of thermogravimetric analysis and TEM. The resulting structural correlations
are analyzed and compared to numerical simulations [2, 5].

[1] P. Pfleiderer et al. EPL, 84, 1600 (2008)
[2] A. Bezrukov et al. Part. Part. Syst. Charact. 23, 388 (2006)
[3] Ch. Rufier et al. Accepted, Langmuir (2011)
[4] I. Martchenko et al. In preparation (2011)
[5] D. Frenkel et al. Phys. Rev. Lett. 52, 4, 287 (1984)
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Design rule for colloidal crystals of
DNA-functionalized particles

Francisco Martinez-Veracoechea,1 Bianca Mladek,2 and Daan

Frenkel1
1University of Cambridge, Department of Chemistry. Lensfield Rd.,
CB2 1EW, Cambridge, United Kingdom
2Department of Structural and Computational Biology,
Max F. Perutz Laboratories, Campus Vienna Biocenter 5, 1030,
Vienna, Austria

We report a Monte Carlo simulation study of the phase behavior of colloids
functionalized with a few long DNA chains. We find that an important qualita-
tive change appears in the phase diagram when the number of DNAs per colloid
is decreased below a critical value. Above this threshold, the system exhibits a
normal vapor-liquid-crystal phase diagram, but below it, the triple point disap-
pears completely. In this case, the condensed phase that coexists with the vapor
at low temperatures and low osmotic pressures is always an amorphous liquid,
and crystallization can therefore only take place under applied pressure. Such
behavior is well known for Helium but is, to our knowledge, unprecedented for
soft matter. Our simulations thus explain why, in the dilute solutions typically
used in experiments, colloids coated with a small number of DNA strands can-
not crystallize. We observe that the disappearance of the triple point for low
DNA coverage is a direct consequence of the discrete nature of DNA binding
and this allows us to formulate a simple rule of thumb to estimate whether a
given system of DNA-coated colloids can crystallize.
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The Netherlands
2New York University, New York, USA

We have found that colloidal cubes, driven by tunable depletion forces,
crystallize into cubic, lego-like structures with a symmetry set by the size of
the depletant polymers [1]. Our colloidal system consists of novel micron-sized
cubes prepared by silica deposition on hematite templates, and various non-
adsorbing water-soluble polymers as depletion agents. The dynamics of cubic
crystal nucleation and growth is directly imaged in situ via optical microscopy.
Furthermore, by using temperature sensitive micro-gel particles, the depletion
attractions can be fine-tuned which allows observation of reversible melting
of cubic crystals. Assisting crystallization with an alternating electric field
improves the uniformity of the cubic pattern allowing the preparation of
macroscopic (almost defect-free) mosaic crystals that exhibits visible Bragg
colors.

[1] Laura Rossi, Stefano Sacanna, William T. M. Irvine, Paul M. Chaikin,
David J. Pine and Albert P. Philipse , Soft Matter (2011)
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Colloidal analogues of charged and uncharged
polymer chains with tunable stiffness

Hanumantha Rao Vutukuri,1 Arnout Imhof,1 and Alfons van

Blaaderen1

1Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The
Netherlands

A quest for colloidal particles with more complex shapes and interactions is fu-
eled by applications in self-assembly, advanced functional materials design, but
also by the demand for more realistic model systems for molecular analogues.
The assembly of colloids into polymer-like chains would constitute a significant
step in the design of colloidal molecules. Here, we present a general method-
ology to produce model systems of colloidal analogues of (bio-)polymer chains
with a tunable flexibility from smaller dielectric-colloids using electric fields
and a simple bonding step. The combination of soft repulsions with induced
dipolar interactions gives rise to high yields and purity of the permanent bead
chains or strings of the original starting particles. We demonstrate that chain
conformations can be controlled by manipulating interactions between the par-
ticles in a chain through electrostatic repulsions, as in polyelectrolytes, and/or
using depletion attractions. Furthermore, our method is used to mimic more
complex polymer chains such as block-polymers and a-tactic chains.
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simulation study
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Patchy particles are promising building blocks for the fabrication of new ma-
terials via self-assembly [1]. Recently, triblock Janus particles were rationally
designed and built to self-assemble into a two-dimensional Kagome lattice
[2], providing a test-case of a complete bottom-up approach to the fabrication
of a colloidal structure. We show that the Kern-Frenkel model provides an
accurate modeling of these particles [3] and that in three directions, triblock
Janus particles are compatible with the formation of a technologically relevant
three-dimentional open cubic structure, the photonic tetrastack crystal [4].
The self-assembly of the tetrastack structure is unfortunately hindered by
the formation of stacking faults alternating planes of cubic and hexagonal
symmetry, a phenomenon analogous to the random stacking of fcc and hcp
for hard-sphere colloids; the stacking alters the global symmetry of the
self-assembled structures disrupting their photonic properties. Interestingly,
this is the same problem that arises in the self-assembly of tetrahedral patchy
particles in the diamond structure [5]. Building on the possibilities offered
by the surface patterning technique used to realize Janus particles [6], we
propose to modify the patch shape, from circular to roughly triangular, to lower
the particles symmetry and to suppress the local structure responsible for the
hexagonal ordering. We then prove, in silico, that these rationally designed
patchy particles readily self-assemble in the desired tetrastack structure.

[1] F. Romano and F. Sciortino, Nat. Mater. 10, 171–172 (2011).
[2] Q. Chen, S. C. Bae and S. Granick, Nature 469, 381–384 (2011).
[3] F. Romano and F. Sciortino, Soft Matter, in press (2011).
[4] T.T. Ngo et. al., Appl. Phys. Lett. 88, 241920 (2006).
[5] F. Romano, E. Sanz and F. Sciortino, J. Chem. Phys., in press (2011).
[6] A.B. Pawar and I. Kretzschmar, Langmuir 25, 9057–9063 (2009).
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2Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal
3Centro de Fı́sica Teórica e Computacional, Lisbon, Portugal
4Dipartimento di Fisica and CNR-ISC, Rome, Italy

Simple models of patchy particles offer the possibility to investigate with a
combination of theoretical and numerical approaches unconventional gas-liquid
phase diagrams [1,2]. In this contribution we introduce a microscopic model
particles functionalized with dissimilar patches which exhibits self-assembly
into chains connected by Y-junctions [2,3]. The model presents both in the
theoretical calculations based on Wertheim theory and in extensive numerical
simulations a ‘pinched” phase diagram, in which the density of the coexisting
liquids, at low temperature, approaches the density of the gas phase. Such
pinched phase diagram, originally proposed by Tlusty and Safran in the context
of dipolar fluids [4], arises from a subtle interplay between the entropy of
chaining and branching and the associated energies. To our knowledge, this
is the first model in which the predicted topological phase transition between
a fluid composed of short chains and a fluid rich in Y-junctions is actually
observed. Interestingly, both theory and simulations suggest that above a
certain threshold for the energy cost of forming a Y-junction, condensation
ceases to exist. We discuss the relevance of our finding in respect to the longly
debated possibility of a gas-liquid critical point [5] in dipolar hard-spheres and
other network forming systems.

[1] F. Sciortino, A. Giacometti, and G. Pastore, Phys. Rev. Lett. 103,
237801 (2009)
[2] J. Russo, J. M. Tavares, P. I. C. Teixeira, M. M. Telo da Gama, and F.
Sciortino, Phys. Rev. Lett. 106, 085703 (2011)
[3] J. Russo, J. M. Tavares, P. I. C. Teixeira, M. M. Telo da Gama, and F.
Sciortino, submitted
[4] T. Tlusty and S. A. Safran, Science 290, 1328 (2000).
[5] G. Ganzenmüller, G. N. Patey, and P. J. Camp, Mol. Phys. 107, 403 (2009)
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Quasicrystals are non-periodic solids which nevertheless possess long-range
positional and orientational order. We study a 2D charge-stabilized colloidal
suspension in quasicrystalline potentials with decagonal or tetradecagonal
symmetry that in experiments are realized by five or seven interfering laser
beams. By using Monte-Carlo simulations, we explore the rich phase behavior
of the colloidal particles in the decagonal potentials and analyze the surprising
phases that can be found when the colloidal ordering results from a competition
of the colloidal interaction and the substrate potential [1]. Further studies
using quasicrystalline potentials with both decagonal and tetradecagonal sym-
metry provide a new insight into the question why many five-fold symmetric
quasicrystals have been identified in nature while not a single quasicrystal
with seven-fold symmetry has been observed so far [2]. Finally, we study the
dynamics of the colloids in response to a phasonic drift. Phasons are unique
to quasicrystals and like phonons they are hydrodynamic modes since they
do not increase the free energy in the long wavelength limit. The properties
of phasons are still intensively discussed in the field. By using Brownian
dynamics simulations, we find that in a potential with constant phasonic drift
individual particles move in different directions. However, there is a net drift
of the colloids that sensitively depends on the direction and velocity of the
phasonic drift. Our observations help to get a deeper insight into the properties
of phasonic displacements in colloidal as well as in atomic quasicrystals.

[1] M. Schmiedeberg and H. Stark, Phys. Rev. Lett. 101, 218302 (2008).
[2] J. Mikhael, M. Schmiedeberg, S. Rausch, J. Roth, H. Stark, and C.
Bechinger, PNAS 107, 7214 (2010).

5. Colloids



O5.18
AudiMax

Sat 10
9:00

What nucleates the crystal? Perspectives from
studies of the hard sphere system

Bill Van Megen1 and Gary Bryant1

1Royal Melbourne Institute of Technology, 124 la trobe st, 3000,
Melbourne, Australia

The growing sophistication of computational and experimental techniques has
led to an increasingly detailed microscopic picture of the structural evolution of
the crystal from the melt. While there is now exquisite detail on the steps by
which the rotational symmetry of the fluid phase is broken, the basic question
that remains is; what causes this to occur? In anthropomorphic terms one might
ask; how do the spheres know that lattice modes comprise a new source of en-
tropy? In endeavouring to answer these questions we consider; (A) Structures
precursory to crystal nuclei observed in metastable suspensions of hard spheres.
(B) Emergence of a negative algebraic tail in the velocity auto-correlation func-
tion (VAF) at the freezing density. In the classical Lorentz gas such decays are
caused by the structural memory provided by the fixed scatterers. (C) The ob-
servation that the classical (positive) t -3/2 hydrodynamic “tail” of the VAF, a
property of the bulk fluid dictated by momentum conservation, is cancelled by
the reaction field in the presence of a wall. This results not only in faster al-
gebraic decays, but in the case of motion perpendicular to the wall, the VAF is
negative. For a suspended particle to attain Brownian motion, or more generally
for a fluid to attain thermodynamic equilibrium, there must be no impediment
to the transfer of its instantaneous, thermally activated momentum to the sur-
rounding fluid. It is proposed that the structural precursors present just such an
impediment that breaks, locally, the rotational invariance of the diffusing part of
the momentum current. Consequences of this proposal vis-a vis crystallization
and glass formation are explored.
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Photo-actuation of macro- and microfluidic
systems
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We have designed a photosensitive surfactant, called AzoTAB, which allows
us to modulate surface tension using light. We are implementing this unique
molecule for the photo-actuation of macroscopic and microscopic liquid
systems. At the macro-scale, we use light to induce interfacial tension gradients
between an oil droplet and a water phase containing AzoTAB. This results in
light-induced Marangoni flows able to make macroscopic droplets move in
a controlled fashion. This phenomenon, which we call the chromocapillary
effect, allows us to manipulate millimetric droplets using light, at a controllable
speed (up to 0.3 mm/s) and along any desired trajectories.[1] This can be
applied for manipulation of biological objects, safe handling of liquids, and
development of light-driven soft machines.[2,3] At the micro-scale, it allows
us to induce by light reversible switches from a continuous two-phase laminar
flow to a droplet generating regime, in microfluidic devices with a usual
water-in-oil flow focusing geometry. It consists in adding AzoTAB to the
aqueous phase to modulate using light the interfacial energy between flowing
liquids and the microfluidic substrate. We found that UV irradiation induced
liquid fragmentation into monodisperse water microdroplets and that many
cycles of reversible and rapid switches (< 2 s) between continuous laminar
flows and stable droplet regimes can be realized.[4] By spatially controlling the
application of the light stimulus, we also achieved the first spatially resolved
remote induction of droplet generation.[4]

[1] A. Diguet, R.-M. Guillermic, N. Magome, A. Saint-Jalmes, Y. Chen,
K. Yoshikawa, D. Baigl, Angew. Chem. Int. Ed. 48, 9281 (2009)
[2] A. Michinson, Nature 462, 297 (2009)
[3] X. Laloyaux, A. M. Jonas, Angew. Chem. Int. Ed. 49, 3262 (2010)
[4] A. Diguet, H. Li, N. Queyriaux, Y. Chen, D. Baigl, submitted
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Liquid-coated ice particles in high-altitude clouds

Anatoli Bogdan1 and Thomas Loerting1

1University of Innsbruck, Innrain 52 a, 6020, Innsbruck, Austria

High-altitude clouds, which include polar stratospheric clouds (PSCs) and up-
per tropospheric (UT) cirrus clouds, participate in many atmospheric physical
and chemical processes. PSCs are thought to be culprits of the formation of
polar stratospheric ozone holes in winter/spring time. The UT cirrus clouds
regulate solar and terrestrial radiation. They also redistribute moisture to
lower altitudes and supply surface for heterogeneous destruction of UT ozone.
Water vapour and UT ozone are dominant greenhouse gases. Naturally, these
processes are governed by the microphysical properties of cloud particles,
i.e., by the composition, surface phase state, and shape of particles. Until
recently it was believed that cloud particles are liquid droplets and/or solid
ice and acid/salt hydrate crystals. However, our laboratory experiments
demonstrate that PSCs and UT cirrus can be composed also of mixed-phase
particles [1, 2]. Such particles can be formed by freezing aqueous aerosol
droplets. As aqueous droplets freeze, ions or/and soluble neutral components
are expelled from the ice lattice to form a residual freeze-concentrated coating
around ice core. If the coating freezes at the atmospheric temperature (above
∼183 - 185 K) then the formed cloud particles will be solid. If it freezes at
temperature below ∼183 K then the cloud particles will be mixed-phase. Our
experiments also show that (i) the character of phase transitions and the number
of freezing and melting events depend on the size of droplets [3] and (ii) lanolin
surfactant may impact on the freezing behaviour of emulsified aqueous droplets.

[1] Bogdan, A. and M. J. Molina. J. Phys. Chem. A, 113, 14123, (2009).
[2] Bogdan, A., M. J. Molina, H. Tenhu, E. Mayer, and T. Loerting. Nature
Chemistry, 2, 197 (2010).
[3] Bogdan, A.; Molina, M. J.; Tenhu, H.; Mayer, E.; Bertel, E.; Loerting, T. J.
Phys: Condensed Matter, 23, 035103 (2011).
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How is interfacial rheology coupled with 3D foam
rheology?

Sylvie Cohen-Addad,1 Séverine Costa,1 Kapil Krishan,2 and

Reinhard Höhler1

1INSP - Univ. Pierre et Marie Curie Paris 6, 4 place Jussieu, 75005,
Paris, France
2Procter & Gamble, Kobe, Japan

Aqueous foams are complex fluids constituted of gas bubbles densely packed in
a surfactant solution. Their structure involves a hierarchy of length scales, set
by the surfactant molecules adsorbed at the liquid-gas interfaces, the soap films
and the bubbles. Their rheological properties result from a coupling between
processes at these different length scales. Below the yield stress, foams exhibit
a linear viscoelastic behavior that involves multiple relaxation processes [1].
While slow relaxations are coupled to the coarsening dynamics, fast relaxations
may arise from viscous flow in the films or in their junctions as well as from
the intrinsic dilatational surface viscosity of the liquid-gas interfaces. Indeed,
interfacial relaxations exhibit characteristic times that can vary by three orders
of magnitude depending on the surfactants [2]. Moreover, due to the structural
disorder, these relaxations may be collective, at the scale of a few bubbles, as
reported in the case of concentrated emulsions [3]. I will present experiments
that probe the linear viscoelastic complex shear modulus of 3D foams, in the
frequency range corresponding to fast relaxations. Using foams with controlled
physico-chemical properties I will show how the dominant dissipative processes
depend on the rigidity of the liquid-gas interfaces [4]. To get more insight into
the role of the disorder of the packing, I will compare the viscoelastic response
of ordered bubble monolayers with either rigid or mobile interfaces to the one
of disordered 3D foams.

[1] R. Höhler, S. Cohen-Addad, J. Phys. : Condens. Matter 17, R1041
(2005).
[2] A.L. Biance, S. Cohen-Addad, R. Höhler, Soft Matter 5, 4672 (2009).
[3] A. Liu et al., Phys. Rev. Lett. 76, 3017 (1996).
[4] K. Krishan, A. Helal, R. Höhler, S. Cohen-Addad, Phys. Rev. E 82, 011405
(2010).
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Interaction of granular particles on liquid
interfaces

P.L. Himantha Cooray,1 Dominic Vella,2 and Pietro Cicuta1

1University of Cambridge, BSS, Cavendish Laboratory, J J Thomson
Avenue, CB3 0HE, Cambridge, United Kingdom
2University of Oxford, Oxford, United Kingdom

Granular particles floating on water deform the liquid surface, such that the
surface tension and gravity forces are balanced. Minimising these deformations
often results in inter-particle attraction, leading to aggregation into surface
clusters. This problem is studied experimentally, and modelled numerically.
Working on a confined system, images of aggregating particles were recorded
at regular intervals. Different granular systems (varying grain size, roughness
and material) were investigated. Forces of attraction between individual pairs
of particles were determined using particle tracking, balancing the velocity to
the drag coefficient. A numerical simulation was developed to determine the
three-dimensional shape of the liquid surface around particles, by solving the
nonlinear Young-Laplace equation using mesh-free finite difference method.
Inter-particle attractions for pairs of particles were determined for different
distances and contact angles. These results were compared with asymptotic
analytical results. At small meniscus slopes and large inter-particle separations,
good agreement was found between the simulation and the analytical result
obtained from linearized Young-Laplace equation. For steeper menisci and
near-range particles, the simulation was a better model because it properly
treats the nonlinear nature of the Young-Laplace equation and does not rely on
linear superposition.
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Drops on functional fibers: from barrels to
clamshells and back

Jolet de Ruiter,1 Burak Eral,1 Riëlle de Ruiter,1 Oh Jung Min,1

Ciro Semprebon,2 Martin Brinkmann,2 and Frieder Mugele1

1Twente University, PO Box 217, 7500 AE, Enschede, The Netherlands
2Max-Planck-Institute for Dynamics and Self-Organization, Göttingen,
Germany

Drops on fibers are a familiar sight, for instance in the form of dew drops on
spider webs. They can exist in two competing morphologies, a cylindrically
symmetric barrel state completely engulfing the fiber and an asymmetric
clamshell state, in which the drop touches the fiber only sideways. Despite their
omnipresence and their practical relevance, e.g. for the adherence of drops to
fibers in separation technology and filter materials, the physical mechanisms
governing the stability of the two morphologies remained elusive. Using
electrowetting-functionalized fibers we can tune the wettability of fibers and
thereby reversibly switch between the two states. This allows determination
of the stability limits of both morphologies as a function of the two relevant
control parameters, namely the contact angle and the volume. While clamshells
are found to prevail for large contact angles and small volumes and barrels
prevail for small angles and large volumes, there is also a wide range of
intermediate parameter values, for which both morphologies are mechanically
stable. Mapping out the energy landscape of the system by numerical mini-
mization of the free energy we find that the barrel state is easily deformed by
non-axisymmetric perturbations. Such perturbations facilitate the transition
to the clamshell state and thereby the removal of drops from the fibers. From
a general perspective, the demonstration of electrowetting-based reversible
switching of liquid morphologies on fibers opens up opportunities for designing
functional textiles and porous materials for various applications in detergency,
filtering, and controlled absorption and release of liquids.
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Structure and stability of electrospray droplets

Mark Miller

University of Cambridge, Department of Chemistry, Lensfield Road,
CB3 0DS, Cambridge, United Kingdom

Electrospray ionisation is a popular and versatile method for obtaining gas phase
droplets containing a solute for analysis in mass spectrometry. The technique
causes minimal fragmentation of the analyte and can be used to study molecules
as large as proteins or even protein complexes. Despite the wide applicability of
electrospray ionisation, some important aspects of the process are not fully un-
derstood, particularly the mechanism by which the solvent evaporates from the
solute, thereby depositing charge onto it. Some of the key results relating to the
stability of charged droplets date back to the work of Lord Rayleigh in the 19th
century. I will present a fresh look at the stability of charged droplets, show-
ing that Rayleigh’s results are not usually applicable in the regime relevant to
electrospray ionisation. I will also examine the statistics of the charge location
in the droplets, showing that instability usually intervenes before the repulsion
between charges is strong enough to drive them to the surface, as envisaged in
the celebrated ”Thomson problem.”
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Interaction of a liquid jet with a soap film

Christophe Raufaste,1 Geoffroy Kirstetter,1 and Franck

Celestini1
1University of Nice, LPMC, LPMC - UMR6622 CNRS UNSA,
Parc Valrose, 06108, Nice, France

Situations where liquid foams are driven far from equilibrium and for which
Plateau’s laws [1] do not hold anymore are still not fully understood. Such is
the case of the impact of an obstacle [2] or of a liquid jet on a liquid foam, two
situations that arise in many natural or industrial conditions. The knowledge
of the response of such a solicitation is a prerequisite to build criteria on foam
deformation and stability. An experimental study at the film scale is performed:
a laminar jet of aqueous surfactant solution is projected towards a liquid film of
the same composition. Typical jet characteristics are the following: diameter
ranges between 0.15 and 0.27 mm, and velocity between 1 and 5 m/s. These
values hold for high Reynolds numbers and inertia dominated flows. The film is
initially horizontal and maintained by a circular frame, 10 cm in diameter. The
whole dynamics of the impact is then recorded by a high speed camera. De-
pending on the jet velocity and impact angle, different behaviors are observed.
For high velocities or quasi-normal jet, the jet pierces the film without any vi-
sual change in their respective geometries. For lower velocities or more inclined
jet, a deflection of the jet is observed and an analogy with transmission in optics
can be made. For further changes in velocity or angle, neither transmission nor
reflection are observed, but the jet is catch and absorbed by the film and gives
rise to a surprising undulating pattern. The different regimes and the transitions
between each other are well characterized by using a Weber number which bal-
ances inertia and capillarity respective contributions. Scaling approaches and a
simple model based on momentum balance are used to quantify the phenomena.

[1] J.A.F. Plateau. Statique expérimentale et théorique des liquides soumis aux
seules forces moléculaires. Gauthier-Villard, Paris, 1873
[2] A. Le Goff, L. Courbin, H. A. Stone and D. Quéré. Energy absorption in a
bamboo foam. EPL 84, 36001 (2008)
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Structure and mechanism of formation of bile salt
micelles from molecular dynamics simulations

Ana Vila Verde1 and Daan Frenkel2

1University of Amsterdam, Van ’t Hoff Institute for Molecular Science,
PO Box 94157, 1090 GE, Amsterdam, The Netherlands
2University of Cambridge, Cambridge, United Kingdom

Bile salts (BS) play a key role in the absorption of fats and fat soluble nutri-
ents by intestinal cells: they form dietary mixed micelles (DMMs) into which
these nutrients are solubilized, transported near the intestinal cell wall and then
released. The molecular scale mechanisms associated with these processes are
still unclear, and to study them we require coarse-grained (CG) models of each
of the components of DMMs. Bile salts are among the least studied DMM com-
ponents and have atypical structure for surfactants (concave steroid ring group
with hydrophilic and hydrophobic faces, attached to which is a short and flexi-
ble tail), so we focus on them. Here report our simulation study of the structure
and mechanism of formation of micelles of pure di- or trihydroxy (2OH; 3OH)
BSs at physiological bile salt and NaCl concentration, using a CG model of
these molecules. Grand-canonical parallel tempering simulations ensure ade-
quate sampling of equilibrium static properties. Our results agree with reported
experiments and point to the origin and biological significance of the bile salts’
unusual surfactant properties. The micelle size distribution shows the typical
qualitative surfactant behavior, but dimers and trimers are abundant even far
from the critical micellar concentration (CMC), the peak of the distribution is
broad and a shallow minimum separates micelles from monomers. These ob-
servations indicate that BSs are poorly cooperative micelle formers and that the
free energy barrier to disassembly is low. The bile salts’ high CMC and low
micelle stability mean DMMs may rapidly aggregate and then easily release nu-
trients near the intestinal wall. The interior of bile micelles is rich in hydrophilic
groups, and molecules may pack in many different orientations in the micelle.
These features may reduce the incidence of undesired smectic phases in the
intestine and may facilitate formation of micelles with nutrients with diverse
shapes, sizes and hydrophilicity.
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Superhydrophobicity on hairy surfaces

Matthew Blow1 and Julia Yeomans2
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Interdisciplinar, Av. Prof. Gama Pinto, 2, P-1649-003, Lisboa,
Portugal
2The Rudolf Peierls Centre for Theoretical Physics, Oxford,
United Kingdom

There is widening interest in the interaction of fluid streams and drops with mi-
cropatterned surfaces. For example, rough surfaces can exhibit superhydropho-
bicity, characterised by contact angles near 180◦ and easy roll-off. The bodies
of some plants and animals are covered with tiny hairs that show strong wa-
ter repellency. There have also been recent advances in the microfabrication
of hairy surfaces. To exploit these possibilities fully, it is important to gain a
better theoretical understanding of how fluids interact with such surfaces. The
leaves of the Lady’s Mantle are superhydrophobic, despite being patterned with
hydrophilic hairs, and it has been proposed that the flexibility of the hairs pro-
vides the mechanism to superhydrophobicity. To quantitatively understand the
role of elasticity, we formulate a model of a large drop in contact with an ar-
ray of elastic hairs and, by minimising the free energy, identify the stable and
metastable states. In particular, we concentrate on states where the hairs bend to
support the drop and find the limits of stability of these configurations in terms
of the material contact angle, hair flexibility, and system geometry. We solve the
model analytically for a 2D system, and for a 3D system in restricted circum-
stances, and find that for hair rigidity within a given range, the drop can remain
suspended for hydrophilic contact angles, and that the robustness of such states
is improved if the hairs have a small uniform inclination. Some aquatic arthro-
pods carry a layer of air against their bodies (plastron), to facilitate underwater
respiration. We study the performance of different shapes and spacings of plas-
tron hairs. We find that bent hairs with a section tangential to the interface can
withstand a high Laplace pressure whilst providing a large interfacial area for
respiration. The plastron is vulnerable to depinning from the tips of the hairs
but this can be suppressed by making the hairs more hydrophobic.

7. Confined fluids, interfacial phenomena



O7.2
SCH
Thu 8
16:50

Two-dimensional colloidal alloys

Martin Buzza,1 Adam Law,1 and Tommy Horozov1
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We study both experimentally and theoretically the structure of mixed mono-
layers of large (3µm) and small (1µm) very hydrophobic silica particles at an
octane/water interface as a function of the number fraction of small particles.
We find that a rich variety of two-dimensional hexagonal super-lattices of
large and small particles can be obtained in this system experimentally due to
strong and long-range electrostatic repulsions through the non-polar oil phase.
These represent the first experimental results for long-range order in a 2D
binary colloidal system. The structures obtained for the different compositions
are in good agreement with zero temperature lattice sum calculations and
finite temperature Monte Carlo simulations [1]. Our theoretical analysis also
reveals that the melting behaviour of these super-lattice structures is very rich,
proceeding via a multi-stage process, with melting temperatures that show a
very strong and non-monotonic dependence on composition [2].

[1] A.D. Law, D.M.A. Buzza, T.S. Horozov, Phys. Rev. Lett., 106, 128302
(2011)
[2] A.D. Law, T.S. Horozov, D.M.A. Buzza, submitted to Soft Matter
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Salt induced changes of interactions in binary
liquid mixtures

Laurent Helden,1 Ursula Nellen,1 Julian Dietrich,1 and Clemens
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12. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57,
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Aggregation phenomena of colloidal particles in binary liquid mixtures are
a topic of current interest. We recently demonstrated that critical Casimir
forces can account for such aggregation in a water 2,6-Lutidine critical mixture
without additional ions [1]. We now study the influence of ions in these systems
by direct measurements of interaction potentials using total internal reflection
microscopy. Strong attraction is observed already several degrees away from
the critical temperature. Depending on boundary conditions an unexpected sign
reversal from strong attraction to repulsion could be observed. This indicates
that beyond Debye screening effects ions play an essential role in such systems.
A possible coupling between the distribution of ions and the concentration
profiles near the surfaces which consecutively affects the interaction potentials
is discussed.

[1] Hertlein et. al, Nature 451,(2008), 172
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Long-range hydration effect of lipid membrane
studied by terahertz time-domain spectroscopy

Mafumi Hishida1 and Koichiro Tanaka1

1Institute for Integrated Cell-Material Sciences, Kyoto University,
Yoshida-Honmachi, Sakyo-ku, 606-8501, Kyoto, Japan

The hydration state of biomolecules has been believed to affect their self-
assembly and functions. However, due to a lack of definitive experimental
method, the hydration states of biomolecules have not been clarified precisely.
On the other hand, very recently, the method to measure precisely the physical
properties of hydration water has been suggested using terahertz time-domain
spectroscopy (THz-TDS), with which collective rotational dynamics of water
molecules is directly measured in ultrafast time scale (sub picosecond) [1].
With using this technique, the evaluated hydration water includes even slightly
perturbed water molecules by solute compared to bulk water, which offers quite
different results from the previous technique such as NMR that observe only
the strongly perturbed water. In the present study, we applied the THz-TDS
for multilamellar vesicles of phospholipid, the model of biomembrane, and
investigated the dynamical state of water between the bilayers (water layer
thickness ∼2.5 nm). By analysing the complex dielectric constant of the lipid
solution in terahertz region, we evaluated the state of the hydration water on
the surface of lipid membrane. Further, by combining the THz TDS results
with the structural information of multilamellar structures of the lipid observed
by small-angle x-ray scattering (SAXS), we clarify that the layer of hydration
water at a phospholipid bilayer is much larger than that considered in earlier
studies, and over 75 of water molecules between bilayers are concluded as the
hydration water [2]. This indicates that the water molecules at a phospholipid
membrane surface have much different physical properties than bulk water
in a large extent on up to 1 nm from the surface, and we need to reconsider
the phenomenon took place through water layer at the lipid membrane in
meso-scale.

[1] T. Arikawa, M. Nagai, K. Tanaka, Chem. Phys. Lett., 457 (2008)
12
[2] M. Hishida, K. Tanaka, Phys. Rev. Lett., 106 (2011) 158102
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Wetting transitions of infinite order

Joseph Indekeu

K. U. Leuven, Theoretical Physics, Celestijnenlaan 200 D, 3001,
Leuven, Belgium

We consider a state-of-the-art mean-field density-functional model for three-
phase equilibria and wetting. The model features two densities and two control
parameters, one of which is related to order parameter asymmetry or spatial
anisotropy. The global wetting phase diagram in the space of these two param-
eters features first-order, second-order, continuously-varying-order and infinite-
order wetting transitions. We argue that varying the spatial anisotropy of the
magnetic interaction in ferromagnets with cubic anisotropy may well lead the
way towards an experimental realization of infinite-order wetting. We also dis-
cuss renormalization group ”corrections” beyond mean-field theory to the wet-
ting phase diagram. Co-authors: Kenichiro Koga (Okayama) and Benjamin
Widom (Cornell)
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Surface effects on the demixing of colloid-polymer
systems

Elizabeth Jamie,1 Roel Dullens,1 and Dirk Aarts1
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We study the effect of a wetting surface upon the fluid-fluid phase separation
of a colloid-polymer mixture. Using Confocal Scanning Laser Microscopy, we
obtain real space images of demixing from both the unstable and metastable
regions of the phase diagram. The presence of a wall breaks the symmetry
of the phase separation morphology in the direction perpendicular to the
surface, due to the interplay between the competing processes of wetting and
demixing. We analyse the thickening of the wetting layers and demonstrate that
hydrodynamic transport processes can significantly increase the rate of wetting
layer growth. We also consider the possibility of a different cross-over between
demixing regimes in bulk and at a wall. We interpret our findings in light of
previous experiments and simulations.
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Electrokinetics of air bubbles in water

Vladimir Lobaskin
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In micro and nanofluidic applications involving complex fluids, the ionic com-
ponents and Coulomb forces are often of primary importance. Due to the com-
petition of main lengthscales: Gouy-Chapman length, Debye length, and the
system size, as well as of diffusive and convective timescales, the character of
ionic motion and of the emerging flows is determined by a rich interplay of hy-
drodynamic, electrostatic, and diffusive effects. A quantitative study of such
systems demands a careful inclusion of all the relevant factors.In this work we
perform computer simulation of electrophoresis of nanoscale air bubbles in a
liquid.The charge on the bubble is induced by preferential adsorption of one ion
type at the interface. We use primitive electrolyte model for all ion types and
coarse-grained DPD solvent that takes care of hydrodynamics.The ion adsorp-
tion potential is tuned to reproduce the experimentally observed pH-dependence
of the bubble mobility in water. We further analyse the bubble and ion motion
under applied DC and AC electric field as a function of the reduced screening
parameter a (a being the bubble radius).We show that the bubble mobility at
different salt concentrations differs from the mobility of a solid colloidal parti-
cle of the same size and charge both due to the surface slip and due to charge
equilibrium condition at the interface. However, we find that a number of non-
trivial effects observed in colloidal electrophoresis: the mobility dependence on
the surface potential, mobility inversion in presence of multivalent ions can be
observed for the bubbles as well. Finally, we discuss the possibility of inferring
the zeta potential of the air-water interface from the mobility data.
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Spontaneous imbibition in disordered porous
solids: a theoretical study of helium in silica
aerogels

Martin Luc Rosinberg,1 Fabio Leoni,2 Edouard Kierlik,3 and
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1CNRS and Université P. et M. Curie, LPTMC, Université P. et M. Curie,
75252, Paris, France
2GIT-SPEC, CEA, Gif-sur-Yvette Cedex, France
3Université P. et M. Curie, Paris, France

We present a theoretical study of spontaneous imbibition in nanopores using a
lattice-gas description and a dynamical mean-field theory. We first consider the
case of a slit pore and investigate the influence of precursor films on the speed
of the imbibition front due to liquid mass conservation. We then study the much
more complex case of a three-dimensional disordered solid in order to interpret
recent experiments with liquid helium in silica aerogels showing a striking influ-
ence of the gel porosity on the fluid dynamical behavior. As in recent phase-field
models of spontaneous imbibition, we assume that capillary disorder predom-
inates over permeability disorder. Our results reveal a remarkable connection
between imbibition and adsorption as also suggested by experiments. Irrespec-
tive of porosity, we find that the first stage of the imbibition process corresponds
to the advance of a liquid film along the silica strands and in the small crevices
of the microstructure. The main front is associated to the filling of the largest
cavities in the gel. The classical Lucas-Washburn scaling law is generally re-
covered, although some deviations may exist at large porosity. Moreover, the
interface roughening is modified by wetting and confinement effects. Our re-
sults suggest that the interpretation of the experiments should be revised.
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Complex fluids at complex surfaces: simply
complicated?

Jose Manuel Romero-Enrique,1 Pedro Patrı́cio,2 Nuno M.

Silvestre,3 Chi-Tuong Pham,4 Zahra Eskarandi,3 Nelson R.
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1Universidad de Sevilla, Dept. de Fisica Atomica, Molecular y Nuclear,
Avenida Reina Mercedes s/n, 41012, Sevilla, Spain
2Instituto Superior de Engenharia de Lisboa and Centro de Fisica
Teorica e Computacional, Lisboa, Portugal
3Centro de Fisica Teorica e Computacional and Universidade de
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4Laboratoire d’Informatique pour la Mécanique et les Sciences de
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We study wetting and filling of patterned surfaces by a nematic liquid crystal.
We focus on three important classes of periodic surfaces: saw-toothed, sinu-
soidal and stepwise, which have been considered in the literature as promising
candidates to develop less-consuming zenithal bistable switches for practical
applications. For saw-toothed substrates, geometry induces the nucleation of
disclination lines on the wedges and apexes of the substrate, so the nematic
surface free energy density develops an elastic contribution which scales as
q ln q (with q being the wavenumber associated with the substrate periodicity).
This leads to a large departure from Wenzel’s prediction for the wetting
transition. For the sinusoidal substrate, the interplay of geometry, surface
and elastic energies can lead to the suppression of either filling or wetting,
which are observed for a same substrate only for a narrow range of roughness
parameters. Finally, periodic stepwise surface displays re-entrant transitions,
with a sequence dry-filled-wet-filled, in the relevant region of parameter space.

[1] P. Patricio, C.-T. Pham and J. M. Romero-Enrique, Eur. Phys. J. E
26, 97 (2008).
[2] J. M. Romero-Enrique, C.-T. Pham and P. Patricio, Phys. Rev. E 82, 011707
(2010)
[3] P. Patrı́cio; J. M. Romero-Enrique; N. M. Silvestre; N. R. Bernardino and
M.M. Telo da Gama, Molec. Phys. IFirst doi: 10.1080/00268976.2010.542780
(2011)
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Hydrate formation at liquid-liquid and liquid-gas
interfaces

Julia Nase,1 Lars Böwer,1 Michael Paulus,1 Felix Lehmkühler,2

Sebastian Tiemeyer,1 Sebastian Holz,1 Diego Pontoni,3 and
Metin Tolan1

1TU Dortmund, Otto-Hahn-Str 4, 44221, Dortmund, Germany
2DESY, Hamburg, Germany
3ESRF, Grenoble, France

The formation of clathrate hydrates, cage-like water-gas structures, is of great
importance in both industries and earth science. However, the formation process
is not completely understood so far. We studied hydrate formation at interfaces
between water and varying guest molecules. We investigated the structure of
these interfaces under quiescent conditions in-situ by means of x-ray reflectivity
measurements both inside and outside the zone of hydrate stability. In the first
part of our work, we studied liquid-liquid water-alkane systems. The roughness
of water-isobutane and water-propane interfaces was in good agreement with
capillary wave theory. No indication for hydrate formation was observed. A
study of a liquid-liquid water-CO2 system revealed a rearrangement of the inter-
face when supercooling in the region of hydrate stability. A pronounced mixing
layer emerged just before the formation of macroscopic hydrate. A strong accu-
mulation of guest molecules was likewise obseved at the liquid-gaseous water-
xenon interfaces, along with spontaneous hydrate formation. We conclude from
our experiments that an accumulation of guest molecules at the interface serves
as a nucleation spot for hydrate formation. We observed that systems with typ-
ically long induction times for hydrate formation do not exhibit an enrichment
of guest molecules at the interface, nor the appearance of macroscopic hydrates,
within the duration of the x-ray experiments (≈ 10 hours). In contrast, in sys-
tems where hydrate was formed during the experiment, we found a mixed layer
with a significant supersaturation of guest molecules. The supersaturation in-
creases drastically the local guest offer and thus the probability for hydrate
formation. The discovery of nano-thick supersaturated layers at the interface
between water and guest molecule phases opens new perspectives for a compre-
hensive understanding of hydrate formation and may represent the basis for a
unified theory of hydrate nucleation.
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Electric field driven instabilities on
superhydrophobic surfaces

Jung Min Oh,1 Gor Manukyan,1 Dirk van den Ende,1 and Frieder

Mugele1

1Physics of Complex Fluids Group, TNW, University of Twente,
7500AE, Enschede, The Netherlands

We study possible mechanisms of the transition from the Cassie state to the
Wenzel state on superhydrophobic surfaces under the influence of electric fields
as a function of the aspect ratio and the wettability of the surface. It is shown
that the equilibrium shape of the composite interface between superhydrophobic
surfaces and drops in the superhydrophobic Cassie state under electrowetting
is determined by the balance of the Maxwell stress and the Laplace pressure.
We demonstrate how reversible switching between the two wetting states can
be achieved locally using suitable surface and electrode geometries. A simple
analytical model for axisymmetric cavities and small deflections of the liquid
menisci within the cavities reveals the existence of a novel electric field driven
instability of the liquid surface. Fully self-consistent calculations of both elec-
tric field distribution and surface profiles show that this instability evolves from
a global one towards a local Taylor cone-like instability for increasing aspect
ratio of the cavities. A two-dimensional map is derived indicating the preva-
lence of the interfacial instability as compared to the depinning scenario of the
three-phase contact line, which is well-known from ordinary superhydrophobic
surfaces.
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Capillarity and gravity: New phase transitions

Carlos Rascón,1 Sam J. Ivell,2 Elizabeth A. G. Jamie,2 Alice L.
Thorneywork,2 Dirk G. A. L. Aarts,2 and Andrew O Parry3

1Universidad Carlos III de Madrid, Av de la Universidad 30, 28911,
Leganés, Spain
2University of Oxford, Oxford, United Kingdom
3Imperial College London, London, United Kingdom

Phase transitions of inhomogeneous fluids such as wetting and capillary-
condensation that occur when a fluid is confined near a substrate or in
parallel-plate geometries have received enormous attention over the last few
decades. In most theoretical studies of these transitions, the influence of a
gravitational field is either considered secondary or, more often, completely
neglected. However, it is clear that gravity plays a central role in many practical
situations and, in combination with confinement, induces further interfacial
behaviour. Consider, for example, a large volume of a non-volatile liquid in
a cylindrical pore which is capped at its bottom. What happens to the liquid
when the capillary is slowly turned to the horizontal? Common experience tells
us that, if the capillary is wide enough, the liquid will spill from the open end
(as water drains from a tipped glass) but, if it is sufficiently narrow, the liquid
will remain in the capillary (as in a drinking straw). It is somewhat surprising
to find that this rather basic aspect of capillarity has not been investigated
in depth. Here, we present theoretical and experimental results illustrating
different aspects of this phenomena, including a number of phase diagrams. An
unexpected connection of this phenomenon with the theory of wetting is also
highlighted.

7. Confined fluids, interfacial phenomena



AudiMax
Wed 7
10:50

O7.13

Non-additive hard sphere mixtures: from bulk
liquid structure to wetting and layering transitions
at substrates

Matthias Schmidt1 and Paul Hopkins2

1Universität Bayreuth, Theoretische Physik II, Physikalisches Institut,
Universitätsstr. 30, D-95440, Bayreuth, Germany
2University of Bristol, Bristol, United Kingdom

An overview of a variety of interesting many-body phenomena that occur
in the simple binary liquid mixture of non-additive hard spheres is given.
Based primarily on a fundamental measures density functional theory [1],
but also on Monte Carlo computer simulations, we investigate the fluid-fluid
demixing phase diagram, the partial bulk pair correlation functions via both the
Ornstein-Zernike and the test particle routes, the asymptotic (large distance)
decay of correlation functions via pole analysis of the complex structure factors
[2], as well as behaviour in inhomogeneous situations. A rich variety of
interfacial phenomena is found when the mixture is exposed to a planar hard
wall (entropic wetting) or in a planar slit (capillary demixing). At a general
hard wall adsorption proceeds either through a series of first-order layering
transitions, where an increasing number of liquid layers adsorbs sequentially,
or via a critical wetting transition, where a thick film grows continuously [3].

[1] M. Schmidt, J. Phys.: Condens. Matt. 16, 351 (2004).
[2] P. Hopkins and M. Schmidt, J. Phys.: Condens. Matt. 22, 325108 (2010).
IOPSelect.
[3] P. Hopkins and M. Schmidt, submitted to Phys. Rev. Letters.
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Snap-off and coalescence of nematic liquid crystal
drops

A.A. Verhoeff1 and H.N.W. Lekkerkerker1

1Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands

Droplet formation and coalescence are both familiar phenomena in everyday
life that are also important in many industrial processes. Furthermore, these
intriguing events are of great scientific interest because of the hydrodynamic
singularities by which they are accompanied. For that reason, both phenomena
have been studied intensively, especially for the case of Newtonian fluids, but
more recently also for non-Newtonian liquids. The already rich behavior that
these fluids display becomes even more intricate if the liquid possesses liquid
crystalline order. We studied both phenomena in suspensions of colloidal
gibbsite platelets with nematic liquid crystalline order. The ultra-low interfacial
tension in these suspensions, combined with the relatively high viscosity and
low density differences, slows down the dynamics of both processes consider-
ably, which allows for detailed investigation with polarized light microscopy.
We found remarkable differences in droplet snap-off behavior depending on
the anchoring properties of the nematic phase. In the case of weak anchoring
droplet snap-off appeared to be determined mostly by the viscous properties
of the nematic phase. On the other hand, in the case of strong anchoring the
snap-off is hindered due to an energy barrier related to the formation of a
topological defect in the separating drop. Next, we studied the coalescence of
nematic droplets with the macroscopic isotropic-nematic interface as a function
of droplet size. It appeared that coalescence of small drops with a uniform
director field proceeds similar to the case of isotropic fluids. However, larger
droplets with a non-uniform director field behave rather differently, in fact
remarkably similar to the passage of deformable immiscible drops through a
liquid-liquid interface.
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Surface slip investigated by scattering techniques

Maximilian Wolff1 and Philipp Gutfreund2

1Division for Material Science, Uppsala University, Box 256, 75105,
Uppsala, Sweden
2Institut Laue-Langevin, Grenoble, France

Surface-related anomalies in flowing liquids are quantified by the slip length.
However, this phenomenological number is neither simply related to a molec-
ular picture (e. g. specific surface structures or unlike conformations of
molecules adjacent to the boundary) nor contains information on the length
scale of the anomaly. An analysis of the surface region by scattering techniques
can potentially reveal insights on a molecular level. Neutron scattering can be
tuned to become surface/interface sensitive for scattering conditions covering
the region of total reflection. Thus, it provides a unique probe to elucidate slip-
induced structural changes. Following along this line we have obtained recent
results that can be summarized as follows: A neutron reflectivity (NR) study
on a in situ sheared low viscosity Newtonian liquid in contact with solid in-
terfaces shows that the extent of the depleted layer close to the interface is in-
fluenced by the surface energy of the substrate, shear rate and temperature but
can not explain the slip length reported earlier and extracted by complementary
techniques. For a micellar system we report on a more ordered structure at an
interface having a good affinity to the micelles corona. In situ measurements un-
der shear load reveal that shear aligns the crystallites, but decreases long-range
correlations. After stopping the shear, a slower relaxation of the crystalline
structure is found close to the interface that showed more pronounced ordering.
A polymer melt has been investigated with NR in contact to grafted polymer
layers at rest and under shear load. We find interdiffusion of the chains from the
melt into the grafted layer before shear is applied. This may explain the amount
of surface slip and result in ripping off molecules from the grafted surface.
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Highly nonlinear dynamics in a slowly sedimenting
colloidal gel

Luca Cipelletti,1 Giovanni Brambilla,1 Stefano Buzzaccaro,2

Roberto Piazza,2 and Ludovic Berthier1

1Universite Montpellier 2, L2C cc 26, Place E. Bataillon, 34095,
Montpellier, France
2Politecnico di Milano, Milano, Italy

We use a combination of original light scattering techniques and particles
with unique optical properties to investigate the behavior of suspensions of
attractive colloids under gravitational stress, following over time the con-
centration profile, the velocity profile, and the microscopic dynamics [1,2].
During the compression regime, the sedimentation velocity grows nearly
linearly with height, implying that the gel settling may be fully described
by a (time-dependent) strain rate. We find that the microscopic dynamics
exhibit remarkable scaling properties when time is normalized by strain rate,
showing that the gel microscopic restructuring is dominated by its macroscopic
deformation.

[1] G. Brambilla et al., Phys.Rev. Lett. 106, 118302 (2011).
[2] ”Gels settle down”, in Physics, Spotlighting exceptional research:
http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.106.118302
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Elastic properties of glasses

Christian Klix,1 Florian Ebert,1 Georg Maret,1 and Peter Keim1

1Universität Konstanz, Universitätsstr. 10, 78464, Konstanz,
Germany

In this contribution, we present experimental results on the elastic properties
of a two-dimensional colloidal glass former. Given that glasses are solids, one
expects a mechanical behaviour similar to that of crystals, i.e., glasses exhibit
a finite shear modulus µ. Using positional data from video microscopy [1], we
study the displacement field and connect it to the dynamical matrix D(q) via
the equipartition theorem [2]. The resulting dispersion relation of the system
hints at structural change upon decreasing the temperature in the glassy state.
Next, this data is used to derive the Lamé coefficients and the corresponding
moduli from thermally excited modes in the long wavelength limit [3] using
continuum elasticity theory. We consider finite size and time effects and find
the expected frequency dependence of the shear modulus µ. By cooling the
system, the significant increase of µ allows us to determine the glass transition
temperature Tg precisely. Following the method described in [4,5], we compute
the short wavelength excitations in our system and analyse the density of states
as well as the structure of normal modes in a two-dimensional colloidal system.

[1] F. Ebert, P. Dillmann, G. Maret, and P. Keim, Rev. Sci. Instr. 80,
083902 (2009)
[2] P. Keim, G. Maret, U. Herz, and H. H. von Grünberg, Phys. Rev. Lett. 92,
215504 (2004)
[3] H. H. Von Grünberg, P. Keim, and G. Maret, Phys. Rev. Lett. 93, 255703
(2004)
[4] A. Gosh, V. K. Chikkadi, P. Schall, J. Kurchan, and D. Bonn, Phys. Rev.
Lett. 104, 248305 (2010)
[5] D. Kaya, N. L. Green, C. E. Maloney, and M. F. Islam, Science 329, 656
(2010)
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Dynamic arrest of fluids in porous media:
crossover from glass- to Lorentz-like behavior

Jan Kurzidim,1 Daniele Coslovich,2 and Gerhard Kahl1
1Institut für Theoretische Physik and CMS, Technische Universität
Wien, Wiedner Hauptstraße 8-10, 1040, Wien, Austria
2Laboratoire Charles Coulomb UMR 5221, Université Montpellier 2
and CNRS, Montpellier Cedex 5, France

We have used molecular dynamics simulations to study the slow dynamics of
a hard-sphere fluid confined to a random array of hard-sphere obstacles. Two
arrest mechanisms control the behavior of the fluid: localization is dominant
at high obstacle densities, φm, whereas caging prevails at large fluid densities,
φf . Similar effects exist in real systems like the movement of proteins in
cytoplasm [1]. We have investigated the specific case of “quenched-annealed”
(QA) systems, where upon varying φm and φf we unveiled scenarios of
discontinuous and continuous dynamic arrest, subdiffusion, and a decoupling of
the time scales for the relaxation of the self and the collective correlators of the
system [2]. Our observations are consistent with many phenomena predicted
by a recent extension of mode-coupling theory to systems with quenched
disorder [3]. To elucidate the origin of the arrest phenomena, we geometrically
distinguished individual pores formed by the obstacles [4]. This enabled us
to identify particles that are “free” (located in the void percolating through
space) and “trapped” (confined in a void of finite volume). We separately
evaluated various dynamic correlators for these two classes of fluid particles
and demonstrated that they exhibit significant differences [5]. Finally, we
investigated how correlations among the fluid particles and among the obstacles
influence the subdiffusive behavior, thus contributing to the ongoing debate
about the mathematical limits that distinguish the Lorentz gas [6] from QA
systems.

[1] M. Hellmann, D. W. Heermann, and M. Weiss, EPL 94, 5 (2011).
[2] J. Kurzidim, D. Coslovich, and G. Kahl, PRL 103, 138303 (2009); PRE 82,
041505 (2010).
[3] V. Krakoviack, PRL 94, 065703 (2005); PRE 79, 061501 (2009).
[4] J. Kurzidim and G. Kahl, Mol. Phys. (in press).
[5] J. Kurzidim, D. Coslovich, and G. Kahl, JPCM (in press), arXiv:1012.1267.
[6] F. Höfling, T. Franosch, und E. Frey, PRL 96, 165901 (2006).
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Liquid-glass phase diagram in confined geometry

Simon Lang,1 Vitalie Botan,2 Martin Oettel,2 David Hajnal,2

Thomas Franosch,1 and Rolf Schilling2

1Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 7,
91058, Erlangen, Germany
2Johannes Gutenberg-Universität, Mainz, Germany

Significant experimental and simulation research has been performed on small
pores, films or tubes in order to elucidate the nature of the glass transition.
In particular, computer simulations reveal that the wall-fluid interaction
significantly alters the transition temperatures and that the diffusivities de-
pend sensitively on the distance of the walls [2]. To achieve a theoretical
description, we extend the microscopic mode-coupling theory to a liquid
confined between two flat and parallel walls. The essence of our extension
consists of an expansion of the assigned space direction into a discrete Fourier
spectrum. This ansatz leads to a generalized intermediate scattering function
forming a matrix-valued quantity of infinite size. Obeying the mode-coupling
approximations adapted to these modifications, a self-consistent description for
the generalized intermediate scattering function follows. The theory contains
the standard mode-coupling equations for two dimensions and three dimensions
as limiting cases and requires as input only the equilibrium density profile
and the static structure factors of the fluid in confinement. We evaluate the
phase diagram as a function of the distance of the plates for the case of a hard
sphere fluid and obtain an oscillatory behavior of the glass transition line as a
result of the structural changes related to layering [1]. We find, that the glass
transition is facilitated at half-integer values of the distance with respect to the
hard-sphere diameter. In contrast, at commensurate packing particles can more
easily slide along the walls and therefore the liquid phase remains favored for
higher packing fractions.

[1] S. Lang, V. Botan, M. Oettel, D. Hajnal, T. Franosch, and R. Schilling,
Phys. Rev. Lett.105 125701 (2010).
[2] J. Mittal, T.M. Truskett, J.R. Errington, and G. Hummer, Phys. Rev. Lett.
100, 145901 (2008).
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The role of the prestructured surface cloud in
crystal nucleation

Wolfgang Lechner,1 Christoph Dellago,2 and Peter Bolhuis1
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The Netherlands
2University of Vienna, Vienna, Austria

For the homogeneous crystal nucleation process in a soft-core colloid model we
identify optimal reaction coordinates from a set of novel order parameters based
on the local structure within the nucleus, by employing transition path sampling
techniques combined with a likelihood maximization of the committor function.
We find that nucleation is governed by solid clusters that consist of an hcp core
embedded within a cloud of surface particles that are highly correlated with
their nearest neighbors but not ordered in a high-symmetry crystal structure.
The results shed new light on the interpretation of the surface and volume terms
in classical nucleation theory.

[1] W.Lechner, C. Dellago, and P. G. Bolhuis, Phys. Rev. Lett 106 085701
(2011).
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Correlated rearrangements in supercooled liquids
from inherent structure deformations

Majid Mosayebi,1 Emanuela Del Gado,2 Patrick Ilg,1 and Hans

Christian Ottinger1

1ETH Zurich, Department of Materials, Polymer Physics, Wolfgang-
Puali Str. 10, 8093, Zurich, Switzerland
2ETH Zurich, Department of Civil Engineering, Microstructure and
Rheology, Zurich, Switzerland

We propose that deformations of inherent structures are a suitable tool for
detecting structural changes and the onset of cooperativity in supercooled
liquids. Following a nonequilibrium thermodynamic theory of glasses [1], we
use small, static deformations to perturb the inherent structures -that are local
minima of the underlying potential energy landscape- of supercooled liquids
approaching the glass transition. By comparing inherent structures before and
after applying the deformation, we can extract a non-affine displacement field
which shows characteristic differences between the high temperature liquid and
supercooled state. The average magnitude of the non-affine displacements is
very sensitive to temperature changes in the supercooled regime and is found
to be strongly correlated with the mean inherent structure energy. In addition,
the non-affine displacement field is characterized by a correlation length that
increases upon lowering the temperature. The finite-size scaling analysis of our
numerical results indicate that the correlation length has a critical-like behavior
and diverges at a temperature Tc, below the temperatures where the system can
be equilibrated. Our numerical results are consistent with random first order
theory, which predicts such a divergence with a critical exponent ν = 2/3 at
the Kauzmann temperature, where the extrapolated configurational entropy
vanishes [3].

[1] H. C. Ottinger, Phys. Rev. E 74, 095501 (2006).
[2] E. Del Gado, P. Ilg, M. Kroger, H. C. Ottinger, Phys. Rev. Lett. 101,
095501 (2008).
[3] M. Mosayebi, E. Del Gado, P. Ilg, H. C. Ottinger, Phys. Rev. Lett. 104,
205704 (2010).
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Glassy dynamics, Spinodal fluctuations, and the
kinetic limit of nucleation in suspensions of
colloidal hard rods

Ran Ni,1 Simone Belli,1 Rene van Roij,1 and Marjolein Dijkstra1

1Utrecht University, Princetonplein 5, 3584CC, Utrecht, The
Netherlands

The interest in positionally and orientationally ordered assemblies of anisotropic
particles is driven by their great technological potential as they exhibit
anisotropic optical properties, but arises from a more fundamental point
of view as well. However, the kinetic pathways of the self-assembly of
anisotropic particles are not well understood. For instance,the phase diagram
of hard rods has been known for around fifteen years, and shows that there
are stable isotropic, nematic, smectic and crystal phases depending on the
aspect ratio. Only very recently, the kinetic pathway of isotropic-nematic(IN)
phase transition for long rods was reported, but the isotropic-smectic(ISm) and
isotropic-crystal(IX) phase transitions of short rods still remain unknown. In
this work, we study the nucleation of colloidal short rods from isotropic fluid
to the crystal and smectic phases by computer simulations. We identify three
dynamic regimes in a supersaturated isotropic fluid of short hard rods: (i) for
moderate supersaturations, we observe nucleation of multilayered crystalline
clusters which is in marked contrast to an earlier study[1] ; (ii) at higher
supersaturations, we find nucleation of small crystallites which arrange into
long-lived locally favored structures; and (iii) at even higher supersaturations,
the dynamic arrest is due to the conventional cage-trapping glass transition.
For longer rods we find that the nucleation of the (stable) smectic phase out of
a supersaturated isotropic state is strongly suppressed by an isotropic-nematic
spinodal instability that causes huge spinodal-like orientation fluctuations.

[1] T. Schilling and D. Frenkel, Phys. Rev. Lett. 92, 085505 (2004).
[2] R. Ni et al., Phys. Rev. Lett. 105, 088302 (2010).
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Structural relaxation and correlation length scales
in glass forming liquids

Srikanth Sastry

Jawaharlal Nehru Centre for Advanced Scientific Research,
Jakkur Campus, 560064, Bengaluru, India

The rapid rise of structural relaxation times in supercooled liquids upon
decreasing temperature, and their transformation to an amorphous solid state
(the glass transition), display many puzzles which have eluded a satisfactory
explanation despite decades of experimental and theoretical investigation. A
key mystery is the role of structural or other lengthscales in determining dy-
namical slow down. The conventional view holds that lengthscales associated
with structural ordering do not grow appreciably as the glass transition is
approached. Nevertheless, the role of growing static and dynamical length
scales in determining relaxation times in glass forming liquids has received
increasing attention in recent years. New insights into spatial correlations in
structure and dynamics, and their relationship with the rapid rise of relaxation
times in glass forming liquids, obtained via computer simulations of model
liquids, will be described. Specific issues addressed will be the relationship of
the short and long time relaxation and corresponding length scales, the validity
of the Adam-Gibbs relation and the breakdown of the Stokes-Einstein relation
in different spatial dimensions.

[1] Smarajit Karmakar, Chandan Dasgupta, Srikanth Sastry, Growing
length and time scales in glass forming liquids, Proc. Natl. Acad. Sci. (US),
106, 3675, (2009)
[2] Smarajit Karmakar, Chandan Dasgupta, Srikanth Sastry, Analysis of
Dynamic Heterogeneity in a Glass Former from the Spatial Correlations of
Mobility, Phys. Rev. Lett., 105, 015701 (2010)
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Thermodynamics and structure of fluids with
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José M. Tavares

CFTC - University of Lisbon, Av. Prof. Gama Pinto, 2, 1649-003,
Lisboa, Portugal

Anisotropic interactions between particles of a fluid promote their aggregation
into self-assembled structures that can compete with the clustering that drives
condensation. We address this general problem by studying a model of patchy
particles, hard spheres whose surface is decorated with ”sticky” spots (or
patches). The interaction between two patches results in a bond between
two spheres. The type of aggregates in which particles self assemble is
tuned by the number of patches in a sphere and by the energy of the bonds.
Using Wertheim’s perturbation theory and a generalized version of the Flory-
Stockmayer percolation theory [1], we analyse the thermodynamics and the
equilibrium structure of several realizations of this model: (i) phase separation
of dimers, chains and hyper-branched polymers [2] ; (ii) the percolation and
the phase behaviour of a system with chaining and branching [3] ; (iii) the
emergence (of entropic origin) of re-entrant phase diagrams when branching
is energetically unfavourable relatively to chaining [4] ; (iv) the appearance of
”empty” fluids in binary mixtures of patchy particles. Finally, we build up a
detailed analogy between a patchy particle model and the dipolar hard sphere
fluid (DHS), that enlightens the controversial phase behaviour observed in the
DHS [6].

[1] J. M. Tavares, P. I. C. Teixeira, and M. M. Telo da Gama, Phys. Rev.
E 81, 010501 (2010).
[2] J. M. Tavares, P. I. C. Teixeira, and M. M. Telo da Gama, Phys. Rev. E 80,
021506 (2009).
[3] J. M. Tavares, P. I. C. Teixeira, M. M. Telo da Gama, and F. Sciortino, J. of
Chem. Phys. 132, 234502 (2010).
[4] J. Russo, J. M. Tavares, P. I. C. Teixeira, M. M. Telo da Gama, and F.
Sciortino, Phys. Rev. Lett. 106 085703 (2011).
[5] D. de las Heras, J. M. Tavares and M. M. Telo da Gama, J. of Chem. Phys.
134, 104904 (2011). [6] J.M. Tavares and P.I.C. Teixeira, to appear in Mol.
Phys. (2011).
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A real-space study of shear induced order in
colloidal hard-sphere fluids

Thijs Besseling,1 Michiel Hermes,1 Andrea Fortini,2 Anke Kuijk,1

Marjolein Dijkstra,1 Arnout Imhof,1 and Alfons van Blaaderen1

1Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The
Netherlands
2Bayreuth University, Bayreuth, Germany

Light scattering experiments have demonstrated that oscillatory shear can
induce crystallization in a colloidal hard-sphere fluid below the bulk freezing
density [1]. We investigate this non-equilibrium phase behavior in real-space
with experiments on density matched PMMA colloids and Brownian Dynamics
computer simulations [2]. The zero-velocity plane of the shear cell enables
us to experimentally investigate the kinetics of the transition with confocal
microscopy while the shear is being applied [3]. Although our computer simu-
lations neglect hydrodynamic interactions and non-linear flow profiles, there is
a good qualitative agreement with the experiments. Depending on the amplitude
and frequency of the oscillation, we identify the real-space structures of four
shear induced phases, including one that has not been reported previously in
the experimental literature. This phase consists of lanes of particles that order
in a tilted hexagonal array in the gradient-vorticity plane. By calculating the
structure factor we also identify the elusive string-phase, both experimentally
and with simulations. As an outlook, we present preliminary results on a
columnar phase formed in a suspension of rod-like particles under steady shear
flow.

[1] B. J. Ackerson, J. Rheol. 34, 553 (1990)
[2] T. H. Besseling, M. Hermes, A. Fortini, M. Dijkstra, A. Imhof and A. van
Blaaderen (2011), submitted
[3] Y. L. Wu, J. H. J. Brand, J. L. A. van Gemert, J. Verkerk, H. Wisman, A.
van Blaaderen and A. Imhof, Rev. Sci. Instrum. 78, 103902 (2007)
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Realization of a µm sized stochastic heat engine

Valentin Blickle1 and Clemens Bechinger1
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Germany

The thermodynamical properties of small systems are of central importance for
the understanding of many processes at the interface of physics, biology and
chemistry. Contrary to the description of large systems which exhibit many in-
ternal degrees of freedom, classical thermodynamics fails to properly describe
microscopic systems such as molecular machines or micro-mechanical devices
where typical energies are on the order of k B T and fluctuations become impor-
tant. We experimentally demonstrate the realization and operation of a micron-
sized heat engine where the working gas and the piston are replaced by a single
colloidal particle and an optical laser trap with time-dependent stiffness. When
the particle’s environment is periodically heated and cooled with an additional
laser beam, work is extracted or delivered from and to the system depending
on the direction of the working cycle. We demonstrate that in the limit of large
cycle times the efficiency of this micro-machine is in agreement with the cor-
responding Carnot value. When the cycle time is decreased we first observe
a maximum in the output power of the machine followed by the stall of the
machine.
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Colloidal asphaltene aggregation and deposition
in capillary flow from multi-scale computer
simulation and experiment

Edo Boek,1 John Crawshaw,1 and Johan Padding2
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2IMCN, Louvain-la-Neuve, Belgium

Asphaltenes are known as the ‘cholesterol’ of crude oil. They may form nano-
aggregates and block rock pores, hindering oil recovery and carbon sequestra-
tion operations. Here w e have investigated the deposition and aggregation of
colloidal crude oil asphaltenes in capillary flow using multi-scale simulations
and experiments. First, we use micro-fluidic flow experiments to co-inject an
asphaltenic fluid with a precipitant, typically n-heptane, in a glass capillary. The
dynamics of asphaltene precipitation, aggregation and deposition in the capil-
lary were monitored using optical microscopy and pressure drop measurements
as a function of time. It turns out that the results are dependent on the flow rate
imposed. At small flow rates, the pressure drop across the capillary increases
slowly, leading to a gradual and complete blocking of the capillary. For high
flow rates, on the other hand, we observe a rapid initial blocking, followed by
episodes of erosion and re-deposition. These observations are confirmed by mi-
croscopy. We hypothesize that the shear forces associated with the high flow
rates are strong enough to erode the transient deposits. We have checked this
hypothesis using a hybrid computer simulation method: Multi Particle Collision
Dynamics for the solvent coupled to Molecular Dynamics (MD) for the asphal-
tene colloids. We tune the flow rate to obtain Pe flow >> 1 (hydrodynamic
interactions dominate) and Re << 1 (Stokes flow). Here, we check in detail the
effect of the finite size of the asphaltene colloids. We observe that the fraction
of particles deposited decreases with increasing flow rate, but does not depend
on the potential well depth. We find that the dimensionless conductivity mea-
sured in the experiment can be well-matched by simulation results. This implies
that the essential physics of the capillary flow deposition experiment has been
captured by the computer simulations.
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Gradient-driven fluctuations in microgravity

Marzio Giglio,1 Alberto Vailati,1 Roberto Cerbino,2 Stefano

Mazzoni,3 Christopher J. Takacs,4 and David S. Cannell4
1Dipartimento di Fisica, Università degli Studi di Milano, 20133, Milano,
Italy
2Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina,
Segrate, Italy
3European Space Agency, Noordwijk, The Netherlands
4Department of Physics and ITST, Santa Barbara, USA

Equilibrium fluctuations of thermodynamic variables, like density or concen-
tration, are known to be small and occur at a molecular length scale. At vari-
ance, theory predicts that non equilibrium fluctuations grow very large both
in amplitude and size. On earth, the presence of gravity and buoyancy forces
severely limits the development of the anomalous fluctuations. We will present
the results of a 14 year long international collaboration on an experiment on non
equilibrium fluctuations in a single liquid and in a liquid suspension under mi-
crogravity conditions. Non equilibrium conditions are generated by applying a
temperature gradient across millimeter size liquid slabs confined by temperature
controlled sapphire windows. Phase modulations introduced by fluctuations are
measured with a quantitative Shadowgraphy method, with optical axis paral-
lel to the temperature gradient. Random phase modulations picked up by the
main beam translate into intensity modulations that are measured by a CCD a
meter or so away from the thin liquid slab. Thousands of images are analyzed
and their two dimensional power spectra yield the fluctuation structure function
S(q), once data are reduced according to the instrumental transfer function T(q).
A robust calibration procedure to derive T(q) will be presented. Also, by ana-
lyzing time delayed images, accurate description of the q dependent dynamics
has been obtained.The mean square amplitude of the fluctuations exhibits an im-
pressive power law dependence at larger q and a low q rolloff, showing that the
fluctuation size is determined by the sample thickness. The shape of the struc-
ture function, its increase due to gravity removal, and its dependence on applied
gradient are in agreement with available theoretical predictions. Diffusive time
correlations up to thousands of seconds are observed for the suspension sample.
Possible impact on growth mechanism in space will be discussed.
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Thermodiffusion of colloids with mesoscopic
simulations

Daniel Luesebrink1 and Marisol Ripoll1
1Forschungszentrum Jülich, Theoretical Soft Matter and Biophysics,
Institute of Complex Systems, 52425, Jülich, Germany

In this work, we present a hydrodynamic simulation study of colloidal disper-
sions in a temperature gradient. The solvent is implemented through a technique
known as multiparticle-collision dynamics (MPC), which properly incorporates
hydrodynamic interactions and is able to sustain temperature gradients. With
a hybrid model of MPC and molecular dynamics, colloid-solvent and colloid-
colloid interactions are included. The Soret coefficient quantifies the thermod-
iffusive effect. The magnitude of the Soret coefficient depends on the effective
force that the particle experiences through the temperature gradient in the solu-
tion, and the sign indicates whether the colloid moves to the hot or to the cold
area. We analyze the dependence of the Soret coefficient on the particle size and
on the average temperature of the solution. The size dependence of the Soret
coefficient in colloidal solutions is described by a power law, ST ∝ as, with a

the colloid diameter, which has also been found in experiments. We consider
different colloid-solvent interactions, which are tuned from strongly repulsive to
strongly attractive. We observe how the exponent and the prefactor of the power
law can be related to the nature of the colloid-solvent interactions. The regime
of concentrated solutions is investigated with increasing volume fraction. The
Soret coefficient is now measured through the concentration and temperature
profiles. We analyze the influence of range and strength of the colloid-colloid
interactions on the thermodiffusive behavior as a function of the colloid concen-
tration, besides the different colloid-solvent interactions.
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Controlled drop emission by wetting properties in
driven liquid filaments

Ignacio Pagonabarraga

Universitat de Barcelona, Carrer marti i Franques, 1, 08028,
Barcelona, Spain

The controlled formation of micron-sized drops is of great importance in mi-
crofluidic technological applications. Here we present a novel, wetting-based,
destabilization mechanism of forced microfilaments on either hydrophilic or
hydrophobic dry stripes, that leads to the periodic emission of droplets. The
drop emission mechanism is triggered above a critical forcing, where the
contact line no longer follows the leading edge of the filament. We propose
a dynamical model which includes the effects of wetting, capillarity, viscous
friction and the driving force to determine the interface cofiguration at the
threshold. We compare our theory to lattice-Boltzmann simulations and
microfluidic experiments, accounting for the emission threshold and hence the
size and emission period of droplets, which can be controlled independently.
Our results show that the critical filament velocity depends strongly on wetting,
and exhibits a qualitative different behaviour on hydrophilic and hydrophobic
stripes, which arises from the dependency of viscous dissipation on the shape
of the advancing interface. Our results suggest that this new kind of instability
in contact lines is general to advancing fronts, and opens new possibilities of
exploiting wetting to handle interfaces at the microscale.

[1] R. Ledesma-Aguilar, R. Nistal, A. Hernandez-Machado and I. Pago-
nabarraga, Nature Materials, 2011 (in press)
[2] C. Duez, C. Ybert, C. Clanet and L. Bocquet, Nature Physics, 3, 180 (2007)
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Stretching dense colloidal suspensions: from flow
to fracture

Michael Smith,1 Rut Besseling,2 Andrew Schofield,2 James
Sharp,1 Mike Cates,2 and Volfango Bertola2

1University of Nottingham, School of Physics, University of Nottingham,
NG9 2PQ, Nottingham, United Kingdom
2University of Edinburgh, Edinburgh, United Kingdom

Concentrated suspensions of particles are commonly used in the pharma-
ceutical, cosmetic and food industries. Manufacture of these products often
involves flow geometries that are substantially different from those studied by
conventional shear rheology. Using a capillary break-up extensional rheometer
we stretch fluids of different volume fraction at strain rates just below, at and
above the critical rate required to induce jamming. We show that the jamming
of a stretched colloidal column is closely related to that observed during shear
rheology. However, fascinating additional effects due to the geometry are also
observed. High speed photography of the filament shows evidence of dilatancy
and granulation, leading finally to fracture at a critical strain rate. Finally
we investigate an intriguing aspect of thin fluid filaments of the colloidal
suspension, when stretched below the critical strain rate required to produce
jamming. These filaments are observed to thin to a critical diameter before
rupturing and displaying visco-elastic recoil.

[1] M.I. Smith, R. Besseling, M.E. Cates, V. Bertola, Nature Comms. 1,
114 (2010)
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Transversal dynamics of paramagnetic colloids in
a longitudinal magnetic ratchet

Pietro Tierno

University of Barcelona, Marti i franques 1, 08028, Barcelona,
Spain

In this talk I will describe the transversal motion of paramagnetic particles
above the magnetic stripe pattern of a uniaxial garnet film, exhibiting a
longitudinal ratchet effect in the presence of an oscillating magnetic field [1].
First I will focus on the behaviour of one colloid. Without the field, the thermal
diffusion coefficient obtained by video microscopy is D0 ∼ 10

−4 micron 2
/s. With the field, the transversal diffusion exhibits a giant enhancement by
almost four decades and a pronounced maximum as a function of the driving
frequency. It is possible to explain the experimental findings with a theoretical
interpretation in terms of random disorder effects within the magnetic film
[2]. On the second part of this talk I will focus on the collective dynamics of
an ensemble of paramagnetic particles organized as a one-dimensional chain
and driven above the magnetic film. The centre of mass of the chain shows a
diffusive behavior with mean square displacement ∼ t, while its end-to-end

distance shows anomalous kinetics with a sub-diffusive growth t
1/2. It is

possible to extract the potential of mean force between the particles within the
chain by invoking the Pope-Ching equation [3]. Thus the experimental data are
interpreted by using the Rouse model, originally developed for polymers, and
all relevant parameters are extracted experimentally.

[1] P. Tierno, et al. Phys. Rev. E 75, 041404 (2007); P. Tierno, et al. J.
Phys. Chem. B 112, 3833 (2008).
[2] P. Tierno, P. Reimann, T. H. Johansen, and Francesc Sagués, Phys. Rev.
Lett. 105, 230602 (2010).
[3] S. B. Pope and E. S. C. Ching, Phys. Fluids A 5, 1529 (1993).
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Osmotic interactions and arrested phase
separation in star-linear polymer mixtures

Domenico Truzzolillo,1 Dimitris Vlassopoulos,1 and Gauthier
Mario2

1F.O.R.T.H., Institute of Electronic Structure and Laser, N Plastira 100,
71110, Heraklion, Greece
2University of Waterloo, Dept. Chem., Polymer Res. Inst., Waterloo,
Canada

Whereas hard-colloid/polymer mixtures are established as a model system for
exploring aspects of gelation and glass formation in soft matter [1], mixtures
involving soft colloids have received very little attention so far [2]. Yet, the
effect of softness can be very significant and lead to an incredible wealth of
phases/states, hence providing ways for tailoring the rhelogy of colloidal dis-
persions. Here we focus on mixtures of star polymers (as model soft colloids)
and linear polymers. Starting from a glassy suspension of star polymers in
molecular solvent, we add linear homopolymers of fixed size ratio and ever
increasing concentration, hence diluting the glass and eventually approaching
the regime of stars in polymer matrix. We show that we can quantitatively
decompose the rheology of the mixtures into colloidal star and linear polymer
contributions, by accounting for the osmotic shrinkage of the stars due to
the added polymers. We show that, when the number of star-star particle
contacts decreases due to the addition of linear polymers, the star repulsions
weaken and eventually become attractive. The attraction is accompanied by
an observed phase separation, pointing to the presence of unstable regions in
the star/linear polymer phase diagram, where gelation results from an arrested
phase separation. Furthermore, we explore the effect of size ratio at fixed
star polymer concentration on the rheology of the mixtures and discover the
existence of different glassy states as the linear concentration changes.These
results add to the generic picture emerging for soft colloidal mixures, with
ultimate aim the molecular design of soft composites with tunable properties.

[1] Pham K. M., Puertas A. M., Bergenholtz J., Egelhaaf S. U., Mous-
saiud A., Pusey P. N.,Schofield A. B., Cates M. E., Fuchs M., Poon W. C. K.,
Science 296, 104-106, 2002.
[2] Stiakakis E., Vlassopoulos D., Likos C.N., Roovers J., and Meier G., Phys.
Rev. Lett., 89, 208302, 2002.
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Non-equilibrium properties of semidilute polymer
solutions in shear flow
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1Forschungszentrum Jülich, Institute for Advanced Simulation, 52425,
Jülich, Germany

Polymers in solution exposed to shear flow exhibit a remarkably rich dynamical
behavior. In particular, they exhibit tumbling motion, i.e., they undergo a
cyclic stretching and collapse dynamics, with a characteristic frequency which
depends on shear rate and the internal relaxation time. This behavior has
intensively be studied for polymers in dilute solution. Much less is known
about the non-equilibrium dynamics of polymers in semidilute solution. While
the dynamical behavior of polymers in dilute solution is governed by hydro-
dynamic interactions, their relevance in semidilute solution is less evident.
Employing hybrid mesoscale hydrodynamics simulations, which combine
molecular dynamics simulations of the polymer with the multiparticle collision
dynamics approach for the fluid, we studied the non-equilibrium behavior of
polymer solutions in shear flow. We find that polymers in both, dilute and
semidilute solutions exhibit large deformations and a strong alignment along
the flow direction. More importantly, in the stationary state, the conformational
and rheological properties for various concentrations are universal functions
of the Weissenberg number with a concentration-dependent relaxation time.
Hence, with increasing concentration, hydrodynamic interactions affect the
conformational and rheological properties only via the increasing relaxation
time. Moreover, dynamical properties–orientational distribution functions and
tumbling times–depend on concentration in excess to the relaxation time, a
dependence, which we attribute to screening of hydrodynamic interactions in
semidilute solution. In the presentation, the various results will be discussed.

[1] C.-C. Huang, R. G. Winkler, G. Sutmann, G. Gompper, Macromolecules
43, 10107 (2010)
[2] C.-C. Huang, G. Sutmann, G. Gompper, R. G. Winkler, EPL 93, 54004
(2011)
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Hydrodynamic synchronisation in driven colloidal
systems: a model for micro-pumps and biological
flows

Pietro Cicuta,1 Loic Damet,1 Giovanni Cicuta,2 Jurij Kotar,1

Nicolas Bruot,1 and Marco Cosentino Lagomarsino3

1University of Cambridge, BSS, Cavendish Laboratory, J J Thomson
Avenue, CB3 0HE, Cambridge, United Kingdom
2University of Parma, Parma, Italy
3University Pierre et Marie Curie, Paris, France

Cilia and flagella are biological systems coupled hydrodynamically, exhibiting
dramatic collective motions. At the scale of a single filament, it is well
understood how momentum is transferred to the fluid, allowing motility and
fluid generation. At the scale of assemblies of filaments (swarms and tissues)
there are various open questions. The talk will be based on an experimental
model system developed in our lab: arrays of colloidal spheres are maintained
in oscillation by switching the position of an optical trap when a sphere
reaches a limit position, leading to oscillations that are bounded in amplitude
but free in phase and period. The interaction between the oscillators is only
through the hydrodynamic flow induced by their motion. We prove the general
structure of the stable dynamical state, in the absence of stochastic noise,
extending previous results on two beads [1] and showing the importance of
geometry through the structure of the coupling tensor [2]. These results help to
understand the origin of hydrodynamic synchronization and how the dynamics
can be tuned. At the colloidal scale, thermal fluctuations are important, and
synchronisation needs to be robust against these. We propose that weakly
correlated phase fluctuations are characteristic of hydrodynamically coupled
systems in the presence of thermal noise.

[1] Kotar et al., Hydrodynamic synchronization of colloidal oscillators,
Proc. Natl. Acad. Sci., 107, 7669-7673 (2010).
[2] Cicuta et al., Hydrodynamic coupling in polygonal arrays of colloids:
Experimental and analytical results, Phys. Rev. E, 81, 051403 (2010).
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Bacterial ratchet motors

Roberto Di Leonardo1 and Luca Angelani1
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Roma, Italy

Self-propelling bacteria are a nanotechnology dream. These unicellular
organisms are not just capable of living and reproducing, but they can swim
very efficiently, sense the environment, and look for food, all packaged in a
body measuring a few microns. Before such perfect machines can be artificially
assembled, researchers are beginning to explore new ways to harness bacteria
as propelling units for microdevices. Proposed strategies require the careful
task of aligning and binding bacterial cells on synthetic surfaces in order to
have them work cooperatively. Here we show that asymmetric environments
can produce a spontaneous and unidirectional rotation of nanofabricated objects
immersed in an active bacterial bath. The propulsion mechanism is provided by
the self-assembly of motile Escherichia coli cells along the rotor boundaries.
Our results highlight the technological implications of active matter’s ability to
overcome the restrictions imposed by the second law of thermodynamics on
equilibrium passive fluids.

[1] R. Di Leonardo et al. PNAS, 107, 9541 (2010).
[2] L. Angelani, R. Di Leonardo, G. Ruocco, Phys. Rev. Lett., 102, 048104
(2009).
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Arrested phase separation in reproducing
bacteria: a generic route to pattern formation?

Julien Tailleur,1 Mike Cates,2 Davide Marenduzzo,2 Ignacio
Pagonabarraga,3 and Alasdair Thompson2

1CNRS, Laboratoire MSC - Batiment Condorcet, 10 rue Alice Domont
et Léonie Duquet, 75013, Paris, France
2University of Edinburgh, Edinburgh, United Kingdom
3Universitat de Barcelona, Carrer marti i Franques, 1, 08028,
Barcelona, Spain

In this talk I will present a generic mechanism that we uncovered recently [1] by
which reproducing microorganisms can form stable patterns. This mechanism
is based on the competition between two separate ingredients. First, a diffusiv-
ity that depends on the local population density can promote phase separation,
generating alternating regions of high and low densities. Then, this is opposed
by the birth and death of microorganisms which allow only a single uniform
density to be stable. The result of this contest is an arrested nonequilibrium
phase separation in which dense droplets or rings become separated by less
dense regions, with a characteristic steady-state length scale. I will illustrate
this mechanism by considering a model of run-and-tumble bacteria, for which a
density dependent diffusivity can stem from either a decrease of the swim speed
or an increase of the tumbling rate at high density. No chemotaxis is assumed
in this model, yet it predicts the formation of patterns strikingly similar to those
believed to result from chemotactic behavior.

[1] M. E. Cates, D. Marenduzzo, I. Pagonabarraga, and J. Tailleur, PNAS, 107,
11715 (2010).

10. Biofluids, active matter



O10.4
SCH
Fri 9
17:20

Behavior of microswimmers in complex
enviroinments
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Kümmerer,2 and Clemens Bechinger2

1Max-Plank-Institut für Intelligente Systeme, Heisenbergstraße 3,
70569, Stuttgart, Germany
2Physikalisches Institut Universität Stuttgart, Stuttgart, Germany

Self-propelled Brownian particles take up energy from their environment and
convert it into directed motion. Examples range from chemotactic cells and bac-
teria to artificial systems. Until now most studies have concentrated on the be-
haviour of microswimmers in homogeneous environments, where one typically
observes a crossover from ballistic motion at short times to enhanced diffusion
at long times. Under many natural conditions, however, self-propelled parti-
cles move inside patterned or crowded environments, e.g., during bioremedation
where bacteria spread through contaminated soils or in medical infections where
pathogenic microorganisms propagate inside tissues. In a similar way, artificial
microswimmers will be employed in patterned surroundings, e.g., in lab-on-a
chip devices. As a first step towards more realistic conditions under which such
microswimmers will be employed, we studied the motion of microswimmers in
simple environments such as single pores, walls and periodically patterned sam-
ples. As microswimmers we used an alternative approach where gold-capped
colloidal spheres are suspended in a binary liquid mixture. Illumination with
light causes a local demixing of the fluid, which leads to self-diffusiophoresis
where the swimming speed is easily controlled by the light intensity. Due to ro-
tational diffusion, the swimming direction of such particles changes randomly.
We investigated how such particles swim across periodically patterned samples
under the influence of an external drift force and observe large differences in
their trajectories depending on their swimming speed. While slow swimmers
overall follow the direction of the force, fast swimmers swim along directions
where the pattern leaves straight channels. We demonstrated that this behaviour
can be exploited to effectively sort particles with different swimming behaviour
and we expect that this method can be also applied to characterize cells and
bacteria.
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Motion of a model micro-swimmer in Poiseuille

flow

Andreas Zöttl1 and Holger Stark1

1TU Berlin, Institut für Theoretische Physik, Hardenbergstraße 36,
10623, Berlin, Germany

Many microorganisms in the human body swim in confined environments like
sperm cells in the Fallopian tube or E. coli bacteria in the colon. Micro-
swimmers exhibit hydrodynamic interactions with bounding surfaces that
change their swimming speeds and orientations. In particular, pushers and
pullers show different behavior. Pushers such as sperm cells or bacteria propel
themselves with flagella attached at the back of the cell body whereas pullers
like the algae Chlamydomonas typically have a propelling apparatus in the front.
Both create a dipole far-field but with reversed fluid flow directions provok-
ing different hydrodynamic interactions with surfaces. Pushers typically get
attracted by a wall and orient parallel to it, pullers get either reflected by a wall
or get trapped oriented perpendicular to it. As a simple model microorgan-
ism we use the so-called squirmer. It has a spherical shape with a prescribed
axisymmetric tangential surface velocity, different for pushers and pullers. We
systematically investigate the swimming behavior of both pushers and pullers in
a cylindrical microchannel with an imposed Poiseuille flow. The hydrodynamics
of squirmers including thermal noise is modeled using multi-particle collision
dynamics. This method introduces ballistic and collision steps of effective par-
ticles in order to solve the Navier-Stokes equations. When the strength of the
flow is sufficiently small, pushers swim upstream at the wall. Pullers can also
swim upstream, however, in the center of the channel. Increasing the strength
of the imposed flow, pushers and pullers now start to tumble. Hydrodynamic
interactions with the wall become negligible and both swimmers can also per-
form periodic motions around the centerline of the channel while drifting down-
stream. These observations match well with our analytical model reminiscent
to the nonlinear pendulum equation.
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Khalid Elamin, Johan Sjöström, Helén Jansson, Jan Swenson

P2.22 Water-like anomalies in core-softened system: relation between dif-

ferent anomalies regions

Yury Fomin, Valentin Ryzhov, Elena Tsiok

Posters



P2.23 Water in different kinds of hydrophobic nanoconfinements

Giancarlo Franzese

P2.24 Study of supramolecular structures in aqueous solutions of diols

Ziyoyev Gafurdjan, Mirzaev Sirojiddin

P2.25 Supercooled aqueous solutions: a route to explain water anomalies

Paola Gallo

P2.26 Local thermodynamics of hydration: theory and application to the

hydration of a hard sphere

Aljaz Godec, Franci Merzel

P2.27 High-resolution RIXS on liquids and gases

Franz Hennies

P2.28 Ultrasonic evidence for low density water to high density water tran-

sition

Eduardo Hidalgo, Mercedes Taravillo, Valentı́n Garcia Baonza, Pedro
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Aurélien Perera

P2.65 Rate determination for precipitation scavenging of HTO vapour

Vladimir Piskunov

P2.66 Parameterization of aerosol washout rate by precipitation

Irina Piskunova, Vladimir Piskunov

P2.67 Role of the fluid and porosity formation during solvent-mediated

phase transformations

Christophe Raufaste, Bjørn Jamtveit, Timm John, Paul Meakin, Dag K.

Dysthe

P2.68 Is there a riskless way to enter the water’s no-man’s land?

Maria-Antonietta Ricci, Fabio Bruni, Rosaria Mancinelli

P2.69 Temperature and concentration effect on the hydration properties of

Cyclodextrin and its substituted form: a depolarized light scattering

study

Barbara Rossi, Lucia Comez, Laura Lupi, Daniele Fioretto, Silvia

Caponi, Flavio Rossi

P2.70 Excess entropy and diffusivity of water in a supercooled aqueous so-

lution of salt

Mauro Rovere, Dario Corradini, Paola Gallo

P2.71 Water-like anomalies in core-softened system: trajectory depen-

dence of anomalous behavior

Valentin Ryzhov, Yury Fomin, Elena Tsiok

P2.72 Solid/liquid and liquid/vapor equilibria for common water models

Ryuji Sakamaki, Amadeu Sum, Tetsu Narumi, Kenji Yasuoka

Posters



P2.73 The structure of simple aromatic liquids and solutions by neutron

scattering

Neal Skipper, Tom Headen, Chris Howard, Daniel Bowron, Alan Soper

P2.74 Percolation line and response functions in supercritical water

Jiri Skvor, Jan Jirsak, Ivo Nezbeda

P2.75 Model of a topological rearrangement wave on hydrogen-bonded

network of water

Alexey Solovey

P2.76 Regularities in the rare earths hydrolytic behaviour

Sophia Stepanchikova

P2.77 How the liquid-liquid transition affects hydrophobic hydration of a

polymer chain in supercooled water

Tomonari Sumi, Hideo Sekino

P2.78 A molecular dynamics study of protonated water clusters

Yukari Sumita

P2.79 Effect of protein dynamics on biological proton transfer reactions

Srabani Taraphder

P2.80 Complex phase behavior of the system of particles with smooth po-

tential with repulsive shoulder and attractive well

Elena Tsiok, Yurii Fomin, Valentin Ryzhov

P2.81 New classical polarizable water model for molecular dynamics sim-

ulations of ice

Linda Viererblová, Jirı́ Kolafa
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Rosa Infante

P3.24 Polymorphism of two-dimensional crystals of oppositely charged

cylindrical macroions

VA Raghunathan, A. V. Radhakrishnan, SK Ghosh, Georg Pabst, AK

Sood

P3.25 Liquid crystalline behaviour of cylindrical block copolymer micelles

Alexander Robertson, Joe Gilroy, Paul Rupar, Laura Senior, Robert

Richardson, Ian Manners

P3.26 Computer simulation study of the surface tension of the vapor-

nematic planar interfaces

Luis F. Rull, Jose Manuel Romero-Enrique

P3.27 Colloidal particles with planar anchoring in liquid crystals

Nuno M. Silvestre, Mykola Tasinkevych, Margarida M. Telo da Gama,

Siegfried Dietrich

P3.28 Direct observation of interaction of nanoparticles in a nematic LC

Miha Skarabot, Igor Musevic

P3.29 Anisotropy of spatiotemporal decorrelation in electrohydrodynamic

turbulence

Luca Sorriso-Valvo, Francesco Carbone, Giuseppe Strangi

Posters



P3.30 Spatio-temporal dynamics, patterns formation and turbulence in

complex fluids due to electrohydrodynamics instabilities

Luca Sorriso-Valvo, Francesco Carbone, Antonio Vecchio

P3.31 Fractal aggregates evolution of methyl red in liquid crystal

Luca Sorriso-Valvo, Federica Ciuchi, Alfredo Mazzulla, José Manuel
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tijano

P5.95 Two dimensional colloidal alloys

Adam Law, Tommy Horozov, Martin Buzza

P5.96 A new two colour dynamic light scattering setup

Achim Lederer, Hans Joachim Schöpe
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P5.124 Kinetic processes of charged colloidal crystals under gravity

Tohru Okuzono, Masako Murai, Masaaki Yamamoto, Akiko Toyotama,

Junpei Yamanaka

P5.125 Patchy, fluorescent, and hard ellipsoids

Patrick Pfleiderer, Zhenkun Zhang, Andrew Schofield, Christian Clasen,

Jan Vermant

P5.126 Interactions between geometric defects in 2D colloidal systems

David Polster, Georg Maret, Peter Keim

P5.127 Electrorheology under non-uniform electric field: a preliminary in-

vestigation

Rosina Ponterio, Pietro Calandra, Francesco Aliotta

P5.128 The structure factor of magnetic colloids

Elena Pyanzina, Joan Cerda, Christian Holm, Sofia Kantorovich

P5.129 Clogging and jamming transitions of particles flowing through ob-

stacle arrays

Charles Reichhardt, Cynthia Reichhardt

P5.130 Ultrastable superparamagnetic nanoparticle design for membrane

assembly and triggered release

Erik Reimhult

Posters



P5.131 Dynamics of localized particles with dynamic density functional the-

ory

Johannes Reinhardt, Joseph Brader

P5.132 Current-induced colloidal heterogeneous nucleation in 2D on attrac-

tive seeds

Alexander Reinmüller, Hans Joachim Schöpe, Thomas Palberg, Erdal C.
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Gerhard Nägele
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P7.42 The mesoscopic structure of liquid-vapour interfaces
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Gögelein Christoph P5.61, P9.22

Goldstein Raymond I3

Golubev Alexey P2.7, P2.8

Golubeva Valentina P2.7, P2.8

Gompper Gerhard O4.10, O9.10, P3.14, P5.152, P9.33, P10.39

Gonzalez Eduardo P4.46

Gonzalez Miguel Angel P1.10, O2.1
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Jülicher Frank P10.10

Author Index



Jullien Marie-Caroline P7.52

Jung Hyun Wook P4.6

Jung YounJoon P1.16

Jung Min Oh O6.5

Jungblut Swetlana P2.36

Jungreuthmayer Christian P6.21, P6.22, P6.23

Juniper Michael P. N. P5.116

Kadivar Erfan P7.53

Kahl Gerhard O5.3, O5.4, O8.3, P4.9, P4.17, P4.37, P5.14,

P5.46, P9.48

Kaiser Herbert P5.83

Kajihara Yukio P8.21, O1.1, P1.13, P1.23, P1.44

Kamalova Dina P4.23, P2.42

Kamerlin Natasha P4.13

Kamien Randall K3.2

Kamoliddin Egamberdiev P2.37

Kamp Marlous P6.10, P6.20

Kanduc Matej P1.17

Kaneko Toshihiro P7.54

Kanse Kamalakar P2.38

Kantorovich Sofia P5.84, P7.55, P1.39, P5.128

Karbowniczek Pawel P7.56, P5.30

Karlström Gunnar P1.43, P2.45

Karsai Ferenc P8.45

Katsnelson Mikhail P4.30

Kawaguchi Masami P6.24

Kawakita Yukinobu P1.44, P8.49

Kawashima Tatsuki P6.26

Kegel Willem K5.2, O5.9, P5.103

Keim Peter P5.85, O8.2, P5.42, P5.44, P5.126

Kern Klaus P7.43

Kesselheim Stefan O4.5

Kezic Bernarda P2.39

Khan Malek P4.12

Khan Manas P9.29

Khan Sandip P7.57

Khani Parviz Hossein P2.30, P2.31, P6.13, P6.14, P6.15, P6.16

Khonakdar Hossein Ali P4.54

Khrapak Sergey P5.86

Khrapiychuk Galyna P7.11

Kierfeld Jan P10.16, P5.87

Kierlik Edouard O7.8

Kim Hyung P1.16

Kim Hyun-ha P5.88

Author Index



Kimura Koji P1.23

Kimura Yasuyuki P3.11, P5.77, P10.31

Kinoshita Masahiro P4.65, P4.66

Kiprop Wycliffe P3.9

Kirstetter Geoffroy O6.7

Kishita Takahiro P3.11

Kiss Peter P7.58

Kitao Shiji P8.43

Kitaoka Satoshi P1.18, P1.28

Kittaka Shigeharu P7.127

Kityk Andriy P9.23

Kiyota Yasuomi P10.17

Kjellander Roland P7.84, P7.86

Klapp Sabine H. L. P5.3, P5.78, P5.82, P5.147, P7.103, P9.65

Klein Susanne P3.12, P3.8

Klepp Juergen P4.50

Klinkigt Marco P5.84

Klix Christian O8.2

Knoche Sebastian P5.87

Knorr Klaus P9.23

Kob Walter P8.41

Kobara Hitomi P5.88, P5.174

Kobayashi Mika O2.6, P8.50

Kobayashi Yasuhiro P8.43

Kobierski Jan P4.24

Koch Christian P4.25

Koch Donald L. P5.29

Kochurova Natalia P9.30

Koda Tomonori P5.120

Kodama Ryota P4.65
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Köller Tetyana P5.150

Kolyadko Irina P2.42, P4.23

Komura Shigeyuki P6.38

Kondo Noboru P3.11

Koning Vinzenz O3.3

Author Index



Konovalov Oleg P4.40, P7.83

Koos Erin O5.8

Koppensteiner Johannes P7.97

Koralewski Marceli P10.27

Körber Christoph P6.22, P6.21, P6.23

Kornyshev Alexei P4.8

Kortschot Rob P5.89
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Reinhad Höhler P6.1

Reinhardt Johannes P5.131

Reinmüller Alexander P5.132, P5.123

Reischl Bernhard P7.98

Author Index



Reith Daniel P4.60

Remizov Alexander P2.42, P4.23

Rescic Jurij P7.99

Resetic Andraz P9.42

Restagno Frédéric P6.35

Retsch Markus P7.80

Reufer Mathias P5.133, P10.29, P10.22

Reyes Andrés Santos P5.66

Reza Carmen P1.51

Ribas Jordi P2.56

Ribeiro Mauro P1.33

Ricci Maria Antonietta P2.68, O2.3, P2.52

Rice Rebecca P5.140

Richard Bowles P8.39

Richardi Johannes P5.134

Richardson Robert P3.8, P3.12, P3.25

Richter Dieter K4.3, P9.23

Riest Jonas P5.135

Rilo Siso Esther P1.34

Rinaudo Marguerite P4.40

Rio Emmanuelle P6.34, P6.35

Riolfo Luis Atilio P2.4

Rios de Anda Agustin P4.48

Ripoll Marisol O9.5, P9.74

Roa Rafael P5.136

Robbins Mark P7.2

Robertson Alexander P3.25

Robles Miguel P7.100, P5.66
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Author Index



Winter Roland P10.37

Wirner Frank P5.180

Wittemann Alexander P5.57, P7.34

Wittmer Joachim P4.34

Wnetrzak Anita P6.42

Wochner Peter P8.24

Woisetschlager Jakob P9.72

Wolf Marcell P4.49

Wolff Katrin P10.38

Wolff Maximilian O7.15

Wongsuwarn Simon P5.181

Wood Dean P4.64

Woodcock Les P8.65

Wu Hua P9.14

Wu Liang P3.39

Wubbenhorst Michael P8.8

Xue Na P4.55

Yahel Eyal P1.49, P1.21

Yahiro Jyunpei P1.44

Yakunov Pavlo P7.126

Yakymovych Andriy P1.50

Yamaguchi Toshio P7.127

Yamamoto Jun O3.5, P3.34, P3.41, P6.17

Yamamoto Masaaki P5.124

Yamamoto Ryoichi P5.167

Yamanaka Junpei P5.124

Yamani Mohammad Hossein P7.46, P7.41

Yamazaki Takeshi P2.86

Yanagishima Taiki P9.73, P5.43

Yang Ami P4.16

Yang Chi P8.66

Yang Jianhui P7.8

Yang Mingcheng P9.74

Yao Makoto P1.23

Yaroson Omolara P6.18

Yasuda Satoshi P4.65

Yasunaga Akinori P1.44

Yasuoka Kenji P2.72, P3.40, P6.39, P7.1, P7.54, P7.59

Ybert Christophe P5.34, P9.64

Yelash Leonid O4.7

Yeomans Julia O7.1, P9.37

Yeomans-Reyna Laura P8.53

Yethiraj Anand P5.182

Yildiz Gülcemal P4.41

Author Index



Yoda Yoshitaka P8.43

Yonekawa Iori P3.40

Yoon Kisun O5.9

Yoshida Koji P7.127

Yoshida Norio P2.87, P10.17, P10.26

Yoshidome Takashi P4.66, P4.65

Yoshikawa Takuya P2.29

Yoshimori Akira P9.46

Yoshioka Jun P3.41

Yoshitake Yumiko P6.34

Yu Hsiu-Yu P5.29

Yuste Santos B. P5.183, P5.99

Zaccarelli Emanuela P5.24, P5.65, P5.112, P5.169, P5.173, P8.57

Zaccone Alessio P2.89, P9.75, P9.14

Zaitseva Olena P7.11

Zalitacz Dorota P4.24

Zambrano Werner P5.158

Zanatta Marco P1.5

Zanghellini Ezio P1.5

Zarragoicoechea Guillermo P6.43

Zatevakhin Mikhail P6.44

Zdimal Vladimir P6.25

Zeidler Anita O2.11

Zeng X.-B. K3.3

Zeng Xiao Cheng P7.1, P7.54, P7.59

Zezelj Milan P4.67, P8.55

Zhang Afang O4.8

Zhang Baozhong O4.8

Zhang Fajun P4.68, P4.49, P5.137

Zhang Isla P5.184

Zhang Kai P5.110

Zhang Zhenkun P5.125

Zheng Haimei P7.77

Zhou Shiqi P5.185

Zhu Diling P8.24

Zhulina Ekaterina B. P4.27

Zhyganiuk Igor P2.10

Ziese Florian P5.186

Zifferer Gerhard P4.38, P8.45, P8.46

Ziherl Primoz K5.3, O5.3, P4.17, P5.9, P10.30

Zimmermann Urs P5.187

Zirbs Ronald P5.170
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Zuñiga-Moreno Abel P1.51

Zvyagolskaya Olga P5.189

Zykova-Timan Tatyana P5.190

Author Index


